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Construction of Exact Invariants for Time
Dependent Classical Dynamical Systems
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In the present work, we survey various methods used for the construction of
exact invariants for dynamical systems involving an explicit time dependence.
More stress is placed on two-dimensional (2D) than one-dimensional (1D)
systems. While both harmonic and anharmonic time-dependent (TD) systems are
discussed in the 1D case, the construction of invariants is carried out for several
interesting central and noncentral systems in 2D. The method of complexification
of two space dimensions is described in detail. The TD coupled oscillator problem,
which in an alternative form suggests the generalization of Ermakov systems, is
analyzed in greater detail. The available methods in the 2D case provide only
the first invariant, and that for a few TD systems. These methods as such are
still inadequate as far as the construction of the second invariant is concerned.
The role and scope of some of the derived invariants in the context of various
physical problems are highlighted. The possibility of extension of some of these
methods to 3D TD systems is also discussed.

1. INTRODUCTION

1.1. Study of Time-Dependent (TD) Systems

During the last three decades or so there has been considerable revival

of interest in the study of dynamical systems involving an explicit time

dependence. This is mainly due to the fact that in various branches not only

of physics but also of engineering (particularly mechanical and electrical

engineering) an account of the time dependence (preferably in an exact
manner) has become desirable since it gives rise to a deeper insight into the

underlying phenomena. In particular, such time-dependent (TD) phenomena
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besides mechanics, frequently occur in other contexts (Section 8) such as the

motion of a charged particle in a particular electromagnetic field, hydrody-

namics, astrophysics, quantum optics, electrical circuits involving TD capaci-
tors and inductors, quantum mechanics, etc. For quite some time TD systems

in one dimension (1D), particularly the TD harmonic oscillator (HO) system,

has been of much interest, but it is only during the last decade that TD

systems in two and higher space dimensions have acquired increasing interest.

If a dynamical system involves an explicit time dependence, then the

corresponding Hamiltonian is not a constant of motion and one has to look
for other invariants of the system. The study of TD systems deals not only

with the construction of these other invariants, but also with finding their

physical interpretations if possible and applications as well. Regarding the

number of these other invariants for a TD system, according to Whittaker,(1)

it is the same as the space dimensionality of the system. If all the invariants

of a system exist and become available, then the system is said to be integrable.
Naturally, the availability of the invariants of a system simplifies the solution

of the corresponding equations of motion. On top of all this, the study of

TD systems is interesting as a mathematical exercise in its own right.

An exhaustive survey of time-independent (TID) classical dynamical

systems was made by Hietarinta(2) and others.(3,4) The use of the PainleveÂ

conjecture for the study of some of these systems has recently been empha-

sized in the review by Lakshmanan and Sahadevan.(5) The discussion of TD

systems has, however, not been covered in these works. It is true that some

of the basic tools for studying both TID and TD systems are common in

principle, but in practice the study of the latter turns out to be somewhat

more difficult. As a result, only simpler situations are often dealt with in the
latter case as compared to those in the former one. Still, for the purposes of

clarifying the theoretical understanding of certain physical phenomena in

light of experimental results (in view of ever-advancing technologies), it

becomes desirable to have an up-to-date report on whatever is known about

this difficult subject of TD systems. In the present work we make an effort

to give such a survey.
From the point of view of mathematical abstraction, no doubt a TD, n-

dimensional Hamiltonian system can be replaced(6) by an (n 1 1)-dimensional

Hamiltonian system in which the time appears as a new canonical coordinate,

but for the practical applications of the theory of TD dynamical systems a

separate account of its time variable is inevitable. This is what we wish to

pursue in this review.

1.2. Study of Noncentral (NC) TD Systems

In order to start any type of study of noncentral (NC) forces in two or

higher dimensions, the study of (i) the corresponding system in 1D and/or
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(ii) central forces in the same dimensions, at least in terms of mathematical

techniques, appears to be a prerequisite. It is only after the type (ii) studies

that some meaningful (in the physical sense) results can be arrived at which
can highlight the importance of considering the underlying NC forces in

describing physical phenomena. Therefore, an understanding of the corres-

ponding 1D system is necessary before actually proceeding to study the

2D system.

Sometimes a given 2D system appears to be a noncentral one, but

in reality it may not be so. In fact, a suitable coordinate transformation
can be used to convert such a system into a separable or into a central

one. This simplifies the study of the given 2D system within the framework

of the methods developed for 1D systems. To ensure that the potential

function V (x1, x2), remains NC or nonseparable in the x1 and x2 coordinates

under the coordinate transformation j 5 ax1 1 bx2 and h 5 cx1 1 dx2,

one should have(2) ac 1 bd Þ 0. Clearly, if V (x1, x2) 5 f (r), where
r 2 5 x 2

1 1 x 2
2, then the system has radial symmetry. In this work, while

1D systems and central systems in 2D will be studied, some NC TD

systems will also be investigated.

1.3. Different Types of Invariants

The notion of invariants is very widely used in different disciplines of

mathematics. In this work, the term ª invariantº or the ª constant of motionº

will be used with reference to the time evolution of the dynamical system.

Even in this case various types of invariants are talked about in the litera-

ture.(2,4) This is mainly because the construction of ª exactº invariants of a
given dynamical system has remained an intractable problem. In such a

situation often ª approximateº invariants, either limited to a subspace of the

given phase space or to a limited time dependence of the system, are designed.

We shall return to some of these discussions later.

For the Hamiltonian systems, an invariant is basically a phase space

function which, in general, can have any functional form. For the TID systems,
though several mathematical forms have been investigated(2) in the literature

and accordingly the invariants have been constructed, somehow the polyno-

mial (in momenta or in velocities) form remains a basic one and is found to

be more convenient for this purpose. For TD systems, however, mainly

polynomial (in momenta) forms have been investigated. Only recently have

several authors(7) studied a rational form of the invariant for 1D TD systems.
In the present work we shall restrict ourselves to the study of only the

polynomial form of the invariants.

As far as the classification of the dynamical invariants is concerned,

they are broadly classified according to their mathematical functional form
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in momenta. At the next stage, for a given polynomial form the invariants

are classified according to the degree of this polynomial, which, in fact,

defines the ª orderº of the invariant. Most of the work on TD systems carried
out thus far has focused on the construction of the second-order invariants

only.

1.4. Some Formal Remarks about Dynamical Invariants

Although the theory of dynamical invariants is available(8±12) in a more

rigorous mathematical language, we restrict ourselves here to some important

formal results which will be of immediate use in the subsequent sections.

For details we refer to these classic works.(8±11)

(i) Once the Hamiltonian H (xi , pi , t) of the system is known, the time
evolution of the coordinates and momenta is given by the Hamilton equations

of motion,

(dxi/dt) 5 ( - H / - pi); (dpi/dt) 5 2 ( - H / - xi) (1)

where i 5 1, 2 for a 2D system.

(ii) If I (xi , pi) is another function in the given phase space, then its time

evolution is given by

(dI/dt) 5 [I, H ]PB (2)

where [A, B]PB is the Poisson bracket defined as

[A, B]PB 5 ( - A / - xi) ( - B / - pi) 2 ( - A / - pi) ( - B / - xi) (3)

If I has to be a constant of motion (invariant), then

(dI/dt) 5 [I, H ]PB 5 0 (4)

This implies that the constancy of I depends on the Hamiltonian H, and in

particular H itself is a constant of motion for TID (autonomous) systems,

and so are the functions of H. Functional independence of two functions G
and K can be tested(2) by considering the 2 3 2 (or 2D 3 2D for the D-

dimensional systems) Jacobian - (G, K )/ - (xi , pi); if its rank is two, then G
and K are functionally independent, otherwise they are said to be functionally

dependent. For TD systems (nonautonomous), however, the time evolution

of a phase space function I (xi , pi , t) in general is given by

(dI/dt) 5 ( - I / - t) 1 [I, H ]PB (5)

and again for the constancy of I one should have
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(dI/dt) 5 ( - I / - t) 1 [I, H ]PB 5 0 (6)

as before. Clearly, the condition (4) is a special case of (6).

In the Lagrangian formulation the equations of motion follow from

(d /dt) ( - L / - xÇ i) 2 ( - L / - xi) 5 0 (7)

where L 5 L (xi , xÇ i , t) is the Lagrangian of the system. Besides these Hamilto-

nian and Lagrangian formulations of classical mechanics, Hamiltonian±Jacobi

theory also throws light on the dynamical invariants in terms of action

and angle variables. However, we avoid these discussions here and refer to
the literature.(13)

(iii) A D-dimensional Hamiltonian system is said to be integrable (in

the sense of Liouville(1)), or rather completely integrable, if there exists a

system of D functionally independent functions In with n 5 1, 2, 3, . . . , D
in the given phase space such that

[Ik , Im]PB 5 0

or

[Ik , Im]PB 5 o
D

i 5 1
[( - Ik/ - xi) ( - Im/ - pi) 2 ( - Ik/ - pi) ( - Im/ - xi)] 5 0 (8)

for all k and m, i.e., all In are in involution with each other. In principle,

there can be more than D functionally independent invariants, but they cannot

be in involution. The maximum number of TID invariants is D, including

the Hamiltonian, and if all of them exist and are globally defined and single-
valued, then the system is sometimes called superintegrable.

In the present work, while we shall ensure the integrability of the TD

1D systems by constructing one invariant for them, for the TD 2D systems,

however, we shall be able to construct only the first invariant.

1.5. Scope, Summary, and Arrangement of the Review

Since the discussion of the TID aspect of classical dynamical systems

has, as mentioned before, been reviewed by several authors(2,4) in one form

or another, in the present article we restrict ourselves to the study of the TD

aspect of these systems in 1D and 2D. While we shall present the extension

of some of the methods used for 1D systems to the case of 2D systems, their
extension from 2D to higher dimensions, in spite of their appearing to be

trivial, will not be carried out as such except for some passing remarks in

the end. It is true that recently an account of the explicit time dependence

of some dynamical systems has led(14) to several interesting new features at
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the quantum level (like Berry’ s phase, quantum chaos, etc.), we avoid such

discussions in this review and confine ourselves to classical aspects. On the

other hand, the studies pursued in this work will be an asset to the understand-
ing of these new quantum phenomena. In fact, such quantum-level studies

remain rather incomplete in the absence of a thorough understanding of the

corresponding classical-level studies. In a way, the scope of this review is

highly limited, but such a compilation of ideas will be very useful as far as

future studies of dynamical systems at the level of both classical and quantum

mechanics are concerned.
In the present work, we survey various methods used for the construc-

tion of exact invariants for dynamical systems involving an explicit time

dependence. For this purpose we first review the studies carried out for

1D systems. In particular, both harmonic and anharmonic TD systems are

discussed in this case. With a view to demonstrating the underlying

complexities in the use of available methods for these constructs, especially
when they are used for the construction of higher order invariants in

higher dimensions, relatively more emphasis is given to the survey of 2D

systems than that of 1D ones. For a variety of TD 2D systems we have

been able to construct only one invariant of second order. One of the

important problems analyzed using various methods in this case is that
of the TD coupled oscillator, which in an alternative form also suggests

the generalization of Ermakov systems in 2D. While the construction of

third- and higher order (in momenta) invariants in both 1D and 2D cases

is demonstrated using the rationalization method, it is pointed out that

the available methods for the 2D case, in their present form, are inadequate

for the purpose of providing the second invariant for these systems. In
this context, a way out is suggested within the framework of the rationaliza-

tion method. Finally, the role and the scope of some of these derived

dynamical invariants with reference to their physical interpretation and

applications in various branches of physics are briefly discussed.

The arrangement of this paper is as follows: In the next section, we

make a brief survey of 1D systems with some additional remarks on the
concept of exact and adiabatic invariants. A summary of various methods

used for the construction of exact invariants for 1D systems is presented

in Section 3. The details of some of these methods are given in Section

4 in the context of 2D systems. Further, somewhat general results for the

third- and higher order invariants in the form of ª potentialº equations are

derived in Section 5. A generalization of Ermakov systems and a new
class of Ermakov-type systems based on the results of Section 4 are

presented in Section 6. In particular, the problem of coupled TD anharmonic

and anisotropic oscillators in 2D is investigated in this section. In Section

7 we discuss the integrability of TD systems in 2D, of course without
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actually ensuring the same for these systems. Some possible interpretations

and applications of some of the derived dynamical invariants are presented

in Section 8. Finally, concluding remarks are made in Section 9.

2. A SURVEY OF ONE-DIMENSIONAL TD SYSTEMS

2.1. Exact and Approximate (Adiabatic) Invariants

The study of adiabatic invariants has received(11±13,15) considerable atten-

tion in the literature often in connection with the motion of charged particles

in a particular electromagnetic field and also in cosmological problems (cf.

Section 8). Until recently, any account of the time dependence in a system

was identified with the concept of adiabatic invariants more or less in an

inseparable manner at the level of both classical and quantum mechanics.
While at the quantum level such a confusion still persists, at the classical

level several methods have been developed in recent years which can throw

light on the nature of invariants for these systems. In fact it has become

possible to construct exact invariants for a number of TD systems. In particu-

lar, a TD harmonic oscillator (HO) system has been very widely studied.
For a dynamical system involving slow variation with respect to time

(or for other physical systems in which a physical quantity changes slowly

from one state to another with respect to an independent variable), the adia-

batic invariants are defined in analogy with the adiabatic process in thermody-

namics. For instance, if l is a TD parameter of the system, then by slow

variation we mean that T (d l /dt) , , l , where T is the period during which
l varies only slightly. In other words, the functional dependence of l (t) on

t is bounded above by an exponential function. Such a system is not closed

and hence the energy of the system is not conserved. For a TDHO in which

v (t) (angular frequency) varies slowly with t the adiabatic invariant turns(13)

out to be I 5 E / v . For a detailed survey of adiabatic invariants we refer to

the work of Chandrasekhar(11) and Whiteman.(12) In this survey, however, we
shall confine our discussions to exact invariants. Sometimes, even for systems

admitting exact invariants, the presence of perturbation allows the construc-

tion of approximate invariants. This, in fact, helps in finding the solution of

the problem, although in an approximate manner. In this case, however, the

question of the degree to which a quantity appears to be a constant during

the successive orders of the perturbation parameter remains an interesting one.
Kolsrud (16) studied exact quantum dynamical solutions for a class of

TDHO systems by introducing a unitary time-displacement operator. Later,

Kruskal(17) developed a general asymptotic theory of nearly periodic classical

systems and derived the invariant for the TDHO system. In fact, in order to
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see a connection between the exact and approximate invariants, one considers

the system

H 5 (1/2 e )[ p2 1 v 2(t)x 2] (9)

for which there exists an invariant

I 5 (1/2)[(x / r )2 1 ( r xÇ 2 e r Ç x)2] (10)

where r 5 r (t) satisfies an auxiliary equation

e 2 r È 1 v 2(t) r 5 r 2 3 (11)

Equations (10) and (11) define a class of invariants because r may be any

particular solution of (11). Now, if (11) is solved recursively to give r as a

series in positive powers of e , then that value of r can be substituted into

(10) to give I as a series in e . For a classical system with real v , that series
for I is the usual adiabatic (approximate) invariant whose leading term is

proportional to e H / v . Kruskal’ s theory may be applied in a closed form to

a system expressed in terms of x, xÇ , and r (t) without actually demanding the

adiabatic result in the limit of small e . Further details of the Kruskal theory

are left to the interested reader. Lewis(18) first obtained an exact invariant for

TDHO and studied the same in the context of both classical and quantum
mechanics. For the quantum case the derivation of a simple relation between

eigenstates of such an invariant and the solution of the Schrodinger equation

has been studied by a number of authors.(19) It may be mentioned that the

TD phase associated with the eigenstates of the invariant satisfies a simple

first-order nonlinear differential equation.

2.2. Study of One-Dimensional Systems

As mentioned before, the Hamiltonian of a system in 1D involving an

explicit time dependence is not a constant of motion and one has to look for

the other invariant of the system. The most studied case is that of a TDHO

described by the Hamiltonian [dropping e from equation (9)]

H 5 (1/2)[p 2 1 v 2(t)x 2] (12)

with the corresponding equation of motion

xÈ 1 v 2(t)x 5 0 (13)

The system (12) admits the invariant

I 5 (1/2)[k (x / r )2 1 ( r xÇ 2 r Ç x)2] (14)

with r (t) satisfying
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r È 1 v 2(t) r 5 k r 2 3 (15)

It may be mentioned that the t dependence, although shown in the

potential term in (12), may arise through any one or both terms. For example,

in physical problems a pendulum with time-varying mass and/or length can

give rise(20) to such systems. Also, the damping (if present) can involve a t
dependence. Note that the appearance of the constant k in (14) and (15) is
illusory. While it may be important for physical reasons (cf. Section 8), it

can as well be eliminated by a scale transformation r ® ! k r . In any case,

there exists a transformation (see, for example, ref. 21) which converts a TD

damped system into a TD undamped one, and subsequently a rescaling of x
and t variables leads to the form (12). For example, the Lagrangian corres-

ponding to the equation of motion (damped case),

xÈ 1 f (t)xÇ 1 v 2(t)x 5 0 (16)

can be expressed as(22)

L 5 (1/2)e F(t) [xÇ 2 2 v 2(t)x 2] (17)

where dF/dt 5 f (t). If one defines the conjugate momentum p 5 xÇ eF, then

the corresponding Hamiltonian becomes H 5 (1/2)[p 2e 2 F 1 v 2(t)e Fx 2]

describing a pendulum with time dependence in both mass and frequency.

In general, the system

yÈ 1 f (t)yÇ 1 v 2(t)y 5 G (t) (18)

with arbitrary TD functions f (t), v 2(t), and G (t) can be cast in the form (23)

xÈ 1 v 2(t)x 5 g (t) (19)

by using the well-known transformation

x 5 y exp[(1/2) #
t

f dt] (20)

and with

v 2(t) 5 v 2(t) 2 1±2 fÇ 2 1±4 f 2; g (t) 5 G (t) exp[1±2 #
t

f dt]

The problem of the TD anharmonic oscillator with cubic anharmonicity

was investigated by Leach(24) and Maharatna et al.(24) and an exact invariant

was obtained by Leach using the method of the Lie theory of extended groups.

The system he considered is
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xÈ 1 a (t)xÇ 1 b (t)x 1 c (t)x 2 1 d (t) 5 0 (21)

In a paper by Leach and Maharaj(25) the first invariant is constructed also for

a class of TD anharmonic oscillators of more complex type, namely the system

xÈ 5 a1(t)x
2 1 a2(t)x

3 1 a3(t)x
4 1 a4(t)x

5 (22)

is studied. In fact, some particular cases of this equation arise in the study

of a charged plasma in an axially symmetric magnetic field and in a shear-

free spherically symmetric gravitational field in general relativity. Another
TD anharmonic system which has been of interest(26,27) is the modified

Emden equation,

qÈ 1 a (t)qÇ 1 q n 5 0 (n 5 positive integer) (23)

which arises in the study of a spherical gas cloud acting under the central
attractions of its molecules and subject to the laws of thermodynamics. The

first invariant is constructed for this system by Leach(27) using a Lie point

symmetry analysis.

The case of nonlinear equations of motion was also considered by Ray

and Reid(28) using Noether ’ s theorem and by Kaushal and Korsch(21) using

the dynamical algebraic approach, corresponding to the system

L 5 (1/2)[xÇ 2 2 v 2(t)x 2 2 f (x, t)] (24)

Interestingly, the system is found to admit an invariant for the case when

f (x, t) 5 2F0G (t) x 2 2m, where m is an arbitrary constant, in the method of

Ray and Reid. On the other hand, in the dynamical algebraic approach f
satisfies a PDE one of whose particular solutions is the same as that obtained

by Ray and Reid. The case when f is momentum dependent (instead of x
dependent) is also investigated in the dynamical algebraic approach and

accordingly an invariant is constructed for the form f ( p, t) 5 2G0 n (t)p 2 2m.

Besides the above cases, several generalizations of f (x, t) in terms of the

auxiliary variable r (t) have also been considered in the literature.(21,28) We
shall return to some of them in the following sections.

3. METHODS FOR ONE-DIMENSIONAL TD SYSTEMS

Several methods have been developed in order to obtain the invariant

for TD systems in 1D. Sometimes the system (12) or other, related forms
have offered a testing ground for deciding the merit of a method used for

this purpose. While it may be more appropriate to discuss the details of these

methods in the context of 2D systems in the next section, here it is worth

giving a brief summary of them for 1D systems. Besides the rationalization
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method of Whittaker type (Hietarinta(2) terms this method the ª directº

method), the other methods which we wish to emphasize below are the

Ermakov method, the dynamical algebraic approach. Lutzky’ s approach using
Noether’ s theorem (related to the Lie symmetries approach), the transforma-

tion-group method, and a few others.

3.1. Rationalization Method

Here one makes(29) an ansatz for the nth-order invariant as

In 5 b0 1 b1xÇ 1 (1/2!)b2xÇ
2 1 . . . 1 (1/n!)bnxÇ

n (25)

where the coefficient functions bi [ bi (x, t). Note that unlike the TID case,

here all powers in xÇ appear in In up to a given n; this in fact complicates the

applicability of the method for the TD case, particularly in higher dimensions,

as will be clear from the next section. Now, for the Hamiltonian

H 5 (1/2)p 2 1 V (x, t) (26)

the use of equations (5) and (6) will yield a recursion relation for the bi as

bÇ i 1 i ( - bi 2 1 / - x) 2 bi 1 1( - V / - x) 5 0 (27)

where i 5 0, 1, 2, . . . , n. We postpone the case of third- and higher order

invariants to Section 5; the results given here are those for the first- and
second-order invariants.

For the first-order invariant, the PDEs to be solved for b0 and b1 are

( - b1/ - x) 5 0; ( - b0 / - x) 5 2 ( - b1/ - t); - b0 / - t 5 b1( - V / - x)

which lead to the ª potentialº equation

( - V / - x) 1 ( r È 1/ r 1)x 2 ( r Ç 2/ r 1) 5 0 (28)

with the only solution

V (x, t) 5 2 ( r È 1/2 r 1) x 2 1 ( r Ç 2/ r 1)x 1 r 3(t)

This system corresponds to a TD, rotating HO expressed by V (x, t) 5 1±2 v 2(t)
[x 2 a (t)]2, and admits the invariant I 5 r 2 1 ( r 1xÇ 2 r Ç 1x), where r 1 and r 2

are functions of t satisfying r È 1 1 v 2(t) r 1 5 0 and r 2 1 v 2(t) a (t) r 1 5 0.

For the second-order invariant, the PDEs to be solved for b0, b1, and b2 are

( - b2/ - x) 5 0 (27a)

2( - b1/ - x) 1 ( - b2/ - t) 5 0 (27b)
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( - b0/ - t) 1 ( - b1/ - t) 2 b2( - V / - x) 5 0 (27c)

( - b0/ - t) 2 b1( - V / - x) 5 0 (27d)

and the ª potentialº equation turns out to be

( 2 1±2 s Ç 1x 1 s 2)( - 2V / - x 2) 2 s 1( - 2V / - t ? - x) 2 3±2 s Ç 1( - V / - x) 1 (

2 1±2 s? ? ? 1x 1 s È 2) 5 0 (29)

where s 1 and s 2 are arbitrary functions of t and should be fixed by rationalizing

(29) for a given V. Equation (29) is a linear, second-order PDE whose solution,

in principle, would provide the integrable systems admitting second-order

invariants. Using (29), while it is not difficult to recover the invariant (14)

for the system (12), the case of a TD arbitrary power potential, namely
V (x, t) 5 b (t)x m, can also be analyzed.(29)

3.2. Ermakov Method

The study of a system of coupled, nonlinear second-order oscillators
possessing at least one invariant has become interesting from the point of

view of applications. Ermakov (30) originally suggested a connection between

the solutions of such a pair of coupled equations, hereafter, termed as Ermakov

systems. In recent years, Ray and Reid in a series of papers(23,28,31,32) have

studied these systems in the context of TDHO and with several degrees of
generalization. Ray and Reid have evolved a method of constructing the

invariant for TD systems in 1D, known as the Ermakov method, and accord-

ingly the invariant so constructed sometimes is known as the Ermakov invari-

ant. This method, although simple, is a heuristic one and sometimes leads

to more general systems possessing invariants.

In this method, one eliminates v 2(t) from the equation of motion for a
TDHO, viz.,

xÈ 1 v 2 (t)x 5 0

and the auxiliary equation (15). As a result of the first integration of the
resultant equation after multiplying the latter by (xÇ r 2 x r Ç ), one immediately

obtains the invariant (14). In this case, however, one has to know the auxiliary

equation in advance. Besides accounting for the damping terms in (13) and

(15), the most common generalization considered by Ray and Reid is in

terms of the equations
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xÈ 1 v 2(t)x 5 g ( r /x)/(x 2 r ) (30a)

r È 1 v 2(t) r 5 f (x / r )/(x r 2) (30b)

These equations, as before, lead to the invariant

I 5 (1/2)[ f (x / r ) 1 u ( r / x) 1 (x r Ç 2 xÇ r )2] (31)

with

f (x / r ) 5 2 #
(x/ r )

f (u) du; u ( r /x) 5 2 #
( r /x)

g (u) du

We shall return to some of these discussions in Sect. 6.

3.3. Dynamical Algebraic Approach

Earlier Korsch(33) for a limited number of TD systems and later Kaushal

and Korsch(21) for a variety of TD Hamiltonian systems exploited the closure

property of dynamical Lie algebra generated by the phase-space functions
G . Takayama(34) applied this approach to obtain the invariant for (19). While

the details and extension of this method to 2D systems will be discussed in

the next section, here we present the central idea.

In this approach one expresses the Hamiltonian of the system as

H 5 o
n

hn(t) G n(x, p) (32)

where the G n are not explicitly TD. Here the dynamical algebra is the Lie

algebra of the G n , which is closed with respect to the Poisson bracket,

[ G n , G m]PB 5 o
r

C r
nm G r (33)

where C r
nm are the structure constants of the algebra. If the G n appearing in

(32) are not sufficient to close the algebra, then the set of G n must be extended

by the inclusion of new G l such that G l 5 [ G n , G m]PB [with hl(t) taken to be

zero in (32)] until the closure is obtained. It may be mentioned that the

algebra contains important structural information for the dynamical behavior

[independent of the particular functions hn(t) appearing in (32)] of the sys-
tem besides its straightforward extension (see, for example, Mizrahi(19) and

Kaushal and Korsch(21)) to the corresponding quantum case. Since the invari-

ant I is also a phase-space function, and thus is a member of the dynamical

algebra, it should be expressible as
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I 5 o
k

l k(t) G k (34)

and its time development should be in accordance with (5) and (6). Equations
(5) and (6). in fact, imply

( - I / - t) 5 [H, I ]PB (35)

which, after using (32) and (34), will lead(33) to the identity

o
r

[ l Ç r 1 o
n,m

C r
nmhm(t) l n(t)] G r [ 0 (r 5 1, 2, . . .)

Clearly, this identity provides a system of linear, first-order ODEs, namely

l Ç r 1 o
n

[ o
m

C r
nmhm(t) l n] 5 0 (36)

from which the unknown l k can be determined. Once the l k are known, the

invariant can be computed from (34). For further details and applications of

the method to specific examples we refer to ref. 21.

3.4. Lutzky’s Approach Using Noether’s Theorem

This method is based on the following formulation of Noether ’ s theorem

due to Lutzky(35) and subsequently used by Ray and Reid(28) for TD systems in

1D. In this approach, modified for the TD case, the symmetry transformation is
described by the group operator

X 5 z ( r , t)
-
- t

1 h (x, t)
-
- x

(37)

If the symmetry transformation defined by (37) leaves the action A,

A 5 # L (x, xÇ , t) dt

invariant, then the combination of the terms z ( - L / - t) 1 h ( - L / - x) 1 ( h Ç 2
xÇ z Ç )( - L / - xÇ ) 1 z Ç L is the total time derivative of a function f ( r , t), i.e.,

z ( - L / - t) 1 h ( - L / - x) 1 ( h Ç 2 xÇ z Ç )( - L / - xÇ ) 1 z Ç L 5 fÇ (38)

It follows from this that a constant of motion for the system is

I 5 ( z xÇ 2 h )( - L / - xÇ ) 2 z L 1 f (39)

In (38), z Ç , h Ç , and fÇ are defined as
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z Ç 5 ( - z / - t) 1 xÇ ( - z / - x)

h Ç 5 ( - h / - t) 1 xÇ (( - h / - x)

fÇ 5 ( - f / - t) 1 xÇ ( - f / - x)

This method is successfully applied not only to the TDHO,(35) but also to

several of its generalizations. The results derived are the same as obtained

by using the dynamical algebraic approach.

3.5. Transformation-Group Method

With a view to obtaining an exact solution of the SchroÈ dinger equation
for a TDHO potential in 1D, the transformation-group method was used by

Ray.(36) This method, based on the transformation-group techniques intro-

duced by Burgan et al.,(37) essentially deals with the transformation of both

dependent and independent variables. The unknown coefficient functions of

the transformation are set in such a way that the form of the equation of
motion remains invariant under the transformation. Interestingly, the energy

integral in the new coordinates turns out to be the desired invariant of the

system. Here, we demonstrate the method for the system (19).

For the system (19), we use the transformation

x8 5 x /C (t) 1 A (t); t8 5 D (t) (40)

where C, A, and D are arbitrary functions of t. Under this transformation,

(19) takes the form (36)

CDÇ 2 d 2x8

dt82 1 (2CÇ DÇ 1 CDÈ )
dx8

dt8
1 [CÈ 1 v 2(t)C ]x8

1 [ 2 CÈ A 2 2CÇ A 2 v 2(t)CA 2 CAÈ 2 g] 5 0 (41)

Demanding that the form (19) remain invariant under (40), the coefficient

of (dx8/dt8) in (41) must vanish. This yields DÇ 5 dt8/dt 5 1/C 2 and accordingly

converts (41) into the form

d 2x8

dt82 1 C 3[CÈ 1 v 2(t)C ]x8

1 C 3[ 2 CÈ A 2 2CÇ A 2 v 2(t)CA 2 CAÈ 2 g] 5 0 (42)

In order to identify (42) with the equation (i.e., with the equation of motion

for a TID HO)
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d 2x8

dt 82 1 kx8 5 0 (43)

one has to chose A and C in (42) such that

CÈ 1 v 2(t)C 5 k /C 3 (44a)

AÈ 1 (kA/C 4) 1 2(CÇ AÇ /C ) 1 g /C 5 0 (44b)

The energy integral for (43) has the form

I 5 1±2 [(dx8/dt8)2 1 kx82]

which, after carrying out the inverse transformation, reduces to the form

l 5 1±2 (CxÇ 2 CÇ x 1 C 2AÇ )2 1 1±2 k (x /c 1 A )2 (45)

where C is any solution of (44a) and A is any solution of (44b). The invariant

(45) and equations (44) are the same as derived by Takayama(34) using the

dynamical algebraic approach. Leach(24) also employed the transformation
(40) to find the invariants for some autonomous systems.

3.6. Other Methods

Besides the methods mentioned above, several other methods have also
been used to construct the invariant for TD systems in 1D. In this regard,

the method of self-similar techniques as used by Feix et al.(38) is worth

mentioning. The underlying idea of this method is rather simple and can be

expressed as follows:

For the system (26) one looks for the invariant I (x, p, t) in accordance
with (5) and (6), which after using xÇ 5 ( - H / - p) and pÇ 5 2 ( - H / - x) reduce

to the form

( - I / - t) 1 xÇ ( - I / - x) 1 pÇ ( - I / - p) 5 0 (46)

Again, after using xÇ 5 p and pÇ 5 2 ( - V / - x) 5 ^(x, t), this equation can be

cast in the form

^(x, t) 5 2 [( - I / - t) 1 p ( - I / - x)]/( - I / - p) (47)

Further, the differentiation of this equation w.r.t. p (keeping in mind that the

left-hand side is independent of p) leads to

( - I / - p) [( - 2I / - t ? - p) 1 ( - I / - x) 1 p ( - 2I / - x ? - p)]

2 ( - 2I / - p 2)[( - I / - t) 1 p ( - I / - x)] 5 0 (48)
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Now one assumes that the solutions of (48) are self-similar, i.e., one

chooses to absorb the time in the reduced variables proportional to x and p
in such a way that the (so-called) self-similar transformation(38)

t 5 a a t; x 5 a b x; p 5 a g p; I 5 a d I (49)

leaves (48) unchanged and thus yielding the relation 2 d 2 a 2 2 g 5 2 d 2
b 2 g , thereby leaving only three of a , b , g , and d as arbitrary. Next, after

introducing the parameters l and m through b / a 5 l and d / a 5 m and

defining the new variables in terms of l and m as

j 5 x /t l ; h 5 p /t l 2 1; G 5 I /t m (50)

one can immediately write down the expressions for ( - I / - t), ( - I / - x), and

( - I / - p) in terms of these new variables. The use of these expressions in
(47) gives

^(x, t) 5 2 t l 2 2[ m G 1 ( h 2 l j )( - G / - j ) 1 (1 2 l ) h ( - G / - h )]/( - G / - h )

5 t l 2 2 F ( j ) (51)

where F ( j ) is the ª reducedº force. One can define the ª reducedº potential

f ( j ) through F ( j ) 5 2 (d f /d j ) and express the potential term in (26) as

V (x, t) 5 t 2 l 2 2 f (x /t l ) (52)

Finally, equation (51) can be cast in the form

m G 1 v ( - G / - j ) 1 [FÄ 1 v (1 2 2 l )]( - G / - v ) 5 0 (53)

with v 5 h 2 l j and FÄ 5 F 1 l (1 2 l ) j .
Since G is directly related to the invariant I [see equation (50)], the

solution of (53) will immediately provide the invariant for the system (26).

Not only this, different ansatze for the solution to equation (53), namely

G 5 v 1 a ( j ), G 5 v 2 1 a ( j ) v 1 b ( j ), G 5 v 2 1 a ( j ) v 2 1 b ( j ) v 1
c ( j ), . . . , as considered by Feix et al.(38) will give rise to invariants of
different orders in momenta. Interestingly, the class of potentials V (x, t) 5
U (x /C )/C 2 2 (CÈ /2C )x 2, where C (t) is a power function of t, is found to

possess an energy-type invariant. More precisely, all potentials investigated

using this method culminate in the form

V (x, t) 5 At2 l 2 2 (x /t l )2 m /K 1 Bx2/t 2 (54)

where A is arbitrary and K and B are again expressed in terms of l and m .
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4. CONSTRUCTION OF THE FIRST INVARIANT IN TWO
DIMENSIONS: VARIOUS METHODS

As mentioned before, the study of TD systems turns out to be more
difficult than the TID systems in a given number of dimensions. For TD

systems in 2D, while the available methods seem to be inadequate to provide

the second invariant (in order to fulfill the integrability requirement of the

system, if it exists), of the system, not many attempts have been made to

obtain the invariants of order higher than the second order (in momenta). In

this section we present various methods used to study the first invariant of
second order in 2D. In particular, the rationalization method and the dynamical

algebraic approach will be discussed. Again, in the rationalization method

both Cartesian and complex coordinate analysis will be carried out as is done

for TID systems by Kaushal et al.(44)

4.1. Rationalization Method

4.1.1. Case of Cartesian Coordinates

The direct or rationalization method has been employed by several

authors(39,40) to study TD systems in 2D using Cartesian coordinates. For the

study of linear (in momenta) invariants we refer to these works. In this section

we describe this method in the context of second-order invariants only. For

this purpose, we consider a dynamical system described by the Lagrangian

L 5 (1/2)(xÇ 21 1 xÇ 22) 2 V (x1, x2, t) (55)

and for the nth-order invariants, in analogy with (25), one can make an ansatz as

In 5 a0 1 o
2

i1 5 1

ai1 j i1 1 (1/2!) o
2

i1, i2 5 1
ai1i2 j i1 j i2 1 . . .

1 (1/n!) o
2

i1, i2 ... in 5 1
ai1i2...in j i1 j i2 . . . j in (56)

but here for the second-order case we restrict ourselves to the form

I 5 a0 1 ai j i 1 (1/2!) aij j i j j (i, j 5 1, 2) (57)

where j i 5 xÇ i; aij 5 aji and a0, ai , aij are now functions of x1, x2, and t. Using

(5) and (6) (with the Poisson bracket now defined for the 2D case) for the

invariance of I and after accounting for the proper symmetrization, one

arrives(41) at the following relations for the coefficient functions aij, ai , and a0:
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aij,k 1 ajk,i 1 aki,j 5 0 (58)

ai,j 1 aj,i 5 2 - aij / - t (59)

a0, i 1 aij j Ç j 5 2 - ai / - t (60)

ai j Ç i 5 2 - a0 / - t (61)

In their detailed form these PDEs can be written as

( - a11 / - x1) 5 0 (62a)

( - a22 / - x2) 5 0 (62b)

2( - a12 / - x1) 1 ( - a11 / - x2) 5 0 (62c)

2( - a12 / - x2) 1 ( - a22 / - x1) 5 0 (62d)

2( - a1/ - x1) 5 2 - a11 / - t (62e)

2( - a2/ - x2) 5 2 ( - a22 / - t) (62f)

( - a1/ - x2) 1 ( - a2/ - x1) 5 2 ( - a12 / - t) (62g)

- a0/ - x1 2 a11( - V / - x1) 2 a12( - V / - x2) 5 2 ( - a1/ - t) (62h)

- a0/ - x2 2 a12( - V / - x1) 2 a22( - V / - x2) 5 2 ( - a2/ - t) (62i)

a1( - V / - x1) 1 a2( - V / - x2) 5 ( - a0 / - t) (62j)

Note that the presence of the term linear in momenta in (57) leads to a larger

number of equations here as compared to that of the TID case. Further, a simple

analysis of equations (62a), (62b), (62c), and (62d) immediately leads(41) to

the forms of the aij as

a11(x2, t) 5 c 0(t)x
2
2 1 c 2(t)x2 1 c 3(t)

a22(x1, t) 5 c 0(t)x
2
1 1 c 1(t)x1 1 c 4(t) (63)

a12(x1, x2, t) 5 2 c 0(t)x1x2 2 1±2 [ c 2(t)x1 1 c 1(t)x2 2 m (t)]

and subsequently the integration of equations (62e)±(62g) yields for the ai

the expressions

a1(x1, x2, t) 5 2 1±2 [ c Ç 2(t)x2 1 c Ç 3(t)]x1 1 1±2 c Ç 1(t)x
2
2

2 1±2 [ m Ç (t) 1 c 5(t)]x2 1 1±2 c 7(t) (64)

a2(x1, x2, t) 5 2 1±2 [ c Ç 1(t)x1 1 c Ç 4(t)]x2 1 1±2 c Ç 2(t)x
2
1

1 1±2 c 5(t)x1 1 1±2 c 6(t)
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Here the c i are arbitrary functions of t. From now onward we drop the

arguments of the respective functions for the sake of brevity. Finally, after

eliminating a0 from (62h) and (62i) by differentiating them w.r.t. x2 and x1,
respectively, and subsequently using the results (63) and the fact that ( - 2a0/

- x1 - x2) 5 ( - 2a0/ - x2 - x1), one arrives(41) at the following ª potentialº equation

for the second-order invariants:

3[ c È 2x2 2 c È 1x1 1 1±2 m È 1 c Ç 5] 1 3(2 c 0x2 1 c 2) ( - V / - x1)

2 3(2 c 0x1 1 c 1)( - V / - x2) 1 (2 c 0x1x2 1 c 2x1 1 c 1x2 2 m )

3 [( - 2V / - x 2
1) 2 ( - 2V / - x 2

2)] 1 2( c 0(x
2
2 2 x 2

1) 1 c 2x2 2 c 1x1 1 c 3 2 c 4)

3 ( - 2V / - x1 - x2) 5 0 (65)

This result was also derived by Grammaticos and Dorizzi(40) and was used
to study a number of TD systems in 2D. The handling of this equation is

even more difficult than the corresponding equation in the TID case.(1,2,41)

An equation similar to (65) for the TID case has been studied by Hietarinta(2)

and others. What they have actually analyzed are cases corresponding to

different values of the coefficients ci [cf. equation (13) in ref. 41)], whereas
we have looked(41) at two major cases corresponding to the separation (under

addition and multiplication) of the potential function in x1 and x2 variables

by keeping the ci free. In the same spirit we have made an attempt here to

solve equation (65) in a general manner by resorting to separable forms of

V (x1, x2, t) in the variables x1 and x2 as before.

The case when

V (x1, x2, t) 5 f (x1, t) 1 g (x2, t)

which is one of the special solutions of (65), yields the form of V as

V (x1, x2, t) 5 c 0[x1 1 c 1/2 c 0]
2 1 c 0[x2 1 c 2/2 c 0]

2 1 v1(t) (66)

which, in analogy with the TID case, is the case of a shifted rotating harmonic
oscillator. Here v1(t) 5 c 8 1 c 0 2 ( c 2

1 1 c 2
2)/2 c 0 is the pure TD part of V.

Invariants are also constructed for several other special solutions of (65).

The rationalization of (65) for a number of TD coupled oscillator systems

has led to the construction of invariants of several interesting cases. Here

we mention only the pertinent results.

(i) TD Coupled Oscillators: For the system described by the potential

V (x1, x2, t) 5 a 1(t)x
2
1 1 a 2(t)x

2
2 1 b 1(t)x1x2 (67)

the invariant is obtained(41) as
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I 5 ( a 1 c 3 1 1±4 c
È

3)x
2
1 1 ( a 2 c 3 1 1±4 c

È
3)x

2
2 1 b 1 c 3x1x2

1 1±2 ( c Ç 7x1 2 c Ç 6 x2) 1 1±2 ( c 7xÇ 1 1 c 6xÇ 2) 2 1±2 c 3 (x1xÇ 1 1 x2xÇ 2)

1 1±2 c5(x1xÇ 2 2 xÇ 1x2) 1 1±2 c 3(xÇ
2
1 1 xÇ 22) (68)

where

c 3(t) 5 [c5/2( a 1 2 a 2)
1/2] # [ b 1/( a 1 2 a 2)

1/2] dt

with c5 [ const; c 6(t) and c 7(t) are give by

c È 6 5 2 2 c 6 a 2 2 c 7 b 1; c È 7 5 2 c 7 a 1 1 c 6 b 1

and a 1, a 2 and b 1 satisfying the constraint

[ b Ç 1( a 1 2 a 2) 2 b 1( a Ç 1 2 a Ç 2)] B1 1 2( a 1 2 a 2)
1/2[ b 2

1 1 ( a 1

2 a 2)
2] 5 0 (69)

with B1 5 * ( b 1/( a 1 2 a 2)
1/2) dt.

(ii) TD Oscillator with Inverse Harmornic and Cross Terms: In this
case, we consider a general system described by the potential

V (x1,x2,t) 5 a 1(t)x
2
1 1 a 2(t)x

2
2 1 b (t)x m

1 x n
2 (70)

and notice that the rationalization of the potential equation (65) is possible
only for the choice of the arbitrary functions c 0 5 c 1 5 c 2 5 m 5 0,

c 3 5 c 4. Further, c È 5 5 0, implying c 5 5 const (say c5) and the numbers m
and n must satisfy m 1 n 5 2 2, as we obtained for the TID case.(41) Though

with this restriction on m and n several choices (including their fractional

values) are possible, we give here results only for a few cases.

For the potential corresponding to m 5 n 5 2 1, viz.,

V (x1, x2, t) 5 a 1(t)x
2
1 1 a 2(t)x

2
2 1 b 0x

2 1
1 x 2 1

2 (71)

the invariant turns out to be

I 5 ( a 1 c 3 1 1±4 c È 3)x
2
1 1 ( a 2 c 3 1 1±4 c È 3)x

2
2 1 b 0 c 3x

2 1
1 x 2 1

2

2 1±2 c 3(x1xÇ 1 1 x2xÇ 2) 1 1±2 c 3(xÇ
2
1 1 xÇ 22 (72)

where c 3, a 1, and a 2 satisfy the equations
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1±4 c
? ? ?

3 1 2 a 1 c Ç 3 1 a Ç 1 c 3 5 0; 1±4 c
? ? ?

3 1 2 a 2 c Ç 3 1 a Ç 2 c 3 5 0

and c5 5 c 6 5 c 7 5 0. The above equations for c 3 yield c 3(t) 5 c3( a 1 2
a 2)

2 1/2, and a constraint on a 1 and a 2 as

4( a? ? ? 1 2 a? ? ? 2)( a 1 2 a 2)
2 2 18( a 1 2 a 2) ( a Ç 1 2 a Ç 2)( a È 1 2 a È 2) 1 15( a Ç 1 2 a Ç 2)

3

5 32( a 1 2 a 2)
3( a 1 a Ç 2 2 a Ç 1 a 2) (73)

Further, a symmetrization of the x m
1 x n

2 term in (70) with respect to m and n,
namely the replacement of b (t)x mx n by ( b 1(t)x

m
1 x n

2 1 b 2(t)x
n
1x

m
2 ) leads to

several new results. For example, for m 5 0, n 5 2 and m 5 2, n 5 0 or

for m 5 1, n 5 2 3 and m 5 2 3, n 5 1 the invariants corresponding to the

TD oscillator with inverse harmonic or with cross terms can easily be

derived.(41) Not only this, but a criterion for the relative time dependence of

a 1, a 2, and b can be set. We shall return to some of these discussions in the
context of the dynamical algebraic approach.

4.1.2. Case of Complex Coordinates

The complexification of two space dimensions in the form Z 5 x1 1
ix2, Z 5 x1 2 ix2 for TD systems has also led to some interesting results as

far as the construction of the first invariant is concerned. In particular, the
integrability of a variety of central potentials in this approach can be confirmed

rather easily as compared to that in the Cartesian case. The integrability of

TID systems in 2D has also been studied(60) within this framework. Here we

extend these results to the case of TD systems and restrict ourselves to the

construction of second-order invariants in the ansatz (56). The systems we
consider now are described by the Lagrangian

L 5 (1/2) | ZÇ | 2 2 V (Z, Z, t) (74)

with the corresponding equations of motion given by

ZÈ 5 2 2( - V / - Z); ZÈ 5 2 2( - V / - Z ) (75)

We make(42) the same ansatz for I as (57), but now j 1 5 ZÇ , j 2 5 ZÈ and a0,
ai , aij are functions of Z, Z, and t. Of course, the forms of the equations

satisfied by aij, ai , and a0 remain the same as (58)±(61), but their detailed

versions now turn out to be (42)

( - a11 / - Z ) 5 0 (76a)

( - a22 / - Z 5 0 (76b)
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2( - a12 / - Z ) 1 ( - a11 / - Z ) 5 0 (76c)

2( - a12 / - Z ) 1 ( - a22 / - Z ) 5 0 (76d)

2( - a1/ - Z ) 5 2 ( - a11 / - t) (76e)

2( - a2/ - Z ) 5 2 ( - a22 / - t) (76f)

( - a1/ - Z) 1 ( - a2/ - Z ) 5 2 ( - a12 / - t (76g)

( - a0/ - Z ) 2 2a11( - V / - Z ) 2 2a12( - V / - Z ) 5 2 ( - a1/ - t) (76h)

( - a0/ - Z ) 2 2a12( - V / - Z ) 2 2a22( - V / - Z ) 5 2 ( - a2/ - t) (76i)

2a1( - V / - Z ) 1 2a2( - V / - Z ) 5 ( - a0/ - t) (76j)

As before, the solution of these PDEs will lead(42,43) to the following expres-

sions for the coefficient functions a’ s:

a11 5 c1Z
2 1 c 2Z 1 c 3 (77a)

a22 5 c1Z
2 1 c 1Z 1 c 4 (77b)

a12 5 2 c1ZZ 2 1±2 c 2Z 2 1±2 Z 1 1±2 m (77c)

a1 5 2 1±2 [ c Ç 2Z 1 c Ç 3]Z 1 1±2 c Ç 1Z
2 2 1±2 [ m Ç 1 c 5]Z 1 c 7/2 (77d)

a2 5 2 1±2 [ c Ç 1Z 1 c Ç 4]Z 1 1±2 c Ç 2Z
2 1 1±2 c 5Z 1 c 6 /2 (77e)

where c i (i 5 1, . . . , 7) and m are arbitrary functions of t, and c1 is in general

a complex separation constant.

Now differentiating (76h) w.r.t. Z and (76i) w.r.t. Z and using ( - 2a0 /

- Z - Z) 5 ( - 2a0/ - Z - Z ) and ( - 2V / - Z - Z) 5 ( - 2V / - Z - Z ), one arrives at

a22( - 2V / - Z 2) 1 [( - a22 / - Z ) 2 ( - a12 / - Z)]( - V / - Z ) 2 a11 ( - 2V / - Z2)

1 [( - a12 / - Z ) 2 ( - a11 / - Z)] ( - V / - Z ) 1 1±2 [( - 2a1/ - t - Z) 2 ( - 2a2/ - t - Z )] 5 0 (78)

Similarly, using ( - 2a0 / - Z ? - t) 5 ( - 2a0 / - t ? - Z ) and ( - 2a0 / - Z ? - t) 5 ( - 2a0 /

- t ? - Z) in (76h) and (76j), (76i), and (76j), respectively, one obtains another

pair of equations,

a2( - 2V/ - Z 2 ) 1 [( - a2 / - Z ) 2 ( - a12 / - t)] ( - V / - Z ) 1 a1( - 2V / - Z - Z )

1 [( - a1/ - Z ) 2 ( - a11 / - t)]( - V / - Z ) 2 a11( - 2V / - t - Z ) 2 a12( - 2V / - t - Z )

1 1±2( -
2a1/ - t 2) 5 0 (79)

a1( - 2V / - Z2) 1 [( - a1/ - Z) 2 ( - a12 / - t)] ( - V / - Z ) 1 a2 ( - 2V / - Z - Z )
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1 [( - a2/ - Z ) 2 ( - a22 / - t)]( - V / - Z ) 2 a22 ( - 2V/ - t - Z ) 2 a12( - 2V / - t - Z)

1 1±2 ( - 2a2/ - t 2) 5 0 (80)

In a way, (78)±(80) may constitute ª potentialº equations for the TD case.

For a given form of V, while the rationalization of these three equations will
fix some arbitrary functions involved in (77), the rest can be determined in

the process of computing a0 from (76j). Further note that for most of systems,

(79) and (80) provide identical results.

For the choice m È (t) 5 0, c Ç 5 (t) 5 0, c 1 5 c 2 5 c 2, and c 3 5 c 4 5 c 4,

(78) yields(44,45)

A( - 2V / - Z 2 ) 1 B ( - V / - Z ) 1 C 5 A ( - 2V / - Z2) 1 B ( - V / - Z ) 1 C

[ f (t) (say) (81)

where A 5 2(c1Z
2 1 c 1Z 1 c 3), B 5 3(2c1Z 1 c 1), C 5 2 (3/2) c È 2Z. If

V (Z, Z, t) 5 V ( | Z | , t) 5 b (t)v ( | Z | ), then the invariants are constructed(43) for

the forms V ( | Z | , t) 5 b (t)(b /r 4 1 d ) (van der Waals-type potential) and

V ( | Z | , t) 5 b (t) (ln r 1 b1/r
4 1 d1) (confining-type potential). Other TD

central potentials investigated are (i) the linear confining potential

V ( | Z | , t) 5 v (t)(ZZ)1/2 2 b (t)(ZZ) 2 1/2 (82)

for which the invariant turns out to be(42)

I 5 m 2 1/2(r 2 m /r) 2 (1/2) m Ç (x1xÇ 1 1 x2xÇ 2) 2 2c1 (x1xÇ 2 2 x2xÇ 1)
2

1 (1/2) m (xÇ 1
2 1 xÇ 2

2) (83)

where r 2 5 ZZ and m 5 at2 1 b8t 1 c8, and (ii) the harmonic confining

potential

V ( | Z | , t) 5 2 (1/2) (uÈ /u)ZZ 2 ( m 0/u)(ZZ) 2 1/2 (84)

which was also studied by Katzin and Levine(46) using the method of symmet-

ries.(47) The invariant obtained for this latter potential is given by

I 5 [( m Ç /8 m )r 2 2 ( ! m / m 0)r
2 1]

1 k m 0(x1xÇ 2 2 x2xÇ 1)[( m Ç / ! m ) x2 2 2 ! m xÇ 2]

2 (1/2) m Ç (x1xÇ 1 1 x2xÇ 2) 2 2c1(x1xÇ 2 2 x2xÇ 1)
2

1 (1/2) m (xÇ 21 1 xÇ 22) (85)

where m 5 u 2/ m 2
0; c 1 5 c 2 5 ku and c 5 5 2 (uuÇ / m 2

0). The invariant is also

constructed for the TD Kepler potential, V ( | Z | , t) 5 2 b (t)(ZZ) 2 1/2.
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It is not difficult to extend to two dimensions the method of Lewis and

Leach,(39) which is based on an infinite series expansion of I in powers of

the momentum. Further, correspondence of this method with the present one
can be established(44) by writing the Poisson bracket of I and H as

[I, H ]PB 5 ( - I / - Z )( - H / - ZÇ ) 2 ( - I / - ZÇ )( - H / - Z )

1 ( - I / - Z )( - H / - ZÇ ) 2 ( - I / - ZÇ )( - H / - Z )

4.2. Dynamical Algebraic Approach

With a view to demonstrating the underlying elegance of the dynamical

algebraic approach at the classical level, we present here its extended version

to the 2D case, which has been carried out recently by Kaushal and Mishra.(48)

No doubt the central idea of the method still remains the same, but now the

complexity of the algebra in terms of closure increases enormously.

The Hamiltonian for a 2D system, as before, can be expressed as

H 5 o
n

hn(t) G n(x1, p1, x2, p2) (86)

where the phase space functions G n are functions of x1, p1, x2, and p2 and

they still close the Lie algebra through (33), but with respect to the Poisson

bracket now defined as

[ f, g]PB 5
- f

- x1

- g

- p1

2
- f

- p1

- g

- x1

1
- f

- x2

- g

- p2

2
- f

- p2

- g

- x2

(87)

The invariant I, also a member of the dynamical algebra, is now expressed as

I 5 o
k

l k(t) G k(x1, p1, x2, p2) (88)

and fulfills the requirement (35), which finally leads to a set of equations
similar to (36) for determining the unknown l k. Here, we employ this method

first for the simple case of coupled TD oscillators (67) and then for the case

of its generalized version.

4.2.1. Coupled TD Oscillators

The Hamiltonian corresponding to the potential (67) can be written as

H 5 (1/2)( p2
1 1 p 2

2) 1 a 1(t)x
2
1 1 a 2(t)x

2
2 1 b (t)x1x2 (89)

which we wish to express in the form (86) by identifying
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G 1 5 p 2
1 /2, G 2 5 p 2

2 /2, G 3 5 x 2
1, G 4 5 x 2

2, G 5 5 x1x2

(90a)

and

h1 5 h2 5 1, h3 5 a 1(t), h4 5 a 2(t), h5 5 b (t) (90b)

In order to close the algebra, in this case it becomes necessary to introduce

five more G k , namely

G 6 5 2 2p1x1, G 7 5 2 p1x2,

G 8 5 2 2p2x2, G 9 5 2 p2x1, (90c)

G 10 5 p1p2

with the corresponding hk(t) 5 0 in (86). Further, the number of nonvanishing

Poisson brackets turns out(48) to be 28 and their use in (35) yields(21) the

following set of first-order ODEs in the l ’ s:

l Ç 1 5 4 l 6 (91a)

l Ç 2 5 4 l 8 (91b)

l Ç 3 5 2 4 a 1 l 6 2 b l 9 (91c)

l Ç 4 5 2 b l 7 2 4 a 2 l 8 (91d)

l Ç 5 5 2 2 b l 6 2 2 a 1 l 7 2 2 b l 8 2 2 a 2 l 9 (91e)

l Ç 6 5 2 a 1 l 1 1 l 3 2 (1/2) b l 10 (91f)

l Ç 7 5 2 b l 1 1 l 5 2 2 a 2 l 10 (91g)

l Ç 8 5 2 a 2 l 2 1 l 4 2 (1/2) b l 10 (91h)

l Ç 9 5 2 b l 2 1 l 5 2 2 a 1 l 10 (91i)

l Ç 10 5 l 7 1 l 9 (91j)

As such the solution of these 10 coupled equations is difficult, but if we set

l 10 5 const (say k), l 1 5 l 2 5 c (t), and l 7 5 2 l 4 5 h (t) (say), then (91)
can be solved immediately. As a result, the invariant (88) for the system (89)

takes the form (48)

I 5 (1/2) c ( p2
1 1 p 2

2) 1 [(1/4) c È 1 a 1 c 1 (1/2)k b ]x 2
1

3 [(1/4) c È 1 a 2 c 2 (1/2)k b ]x 2
2 1 ( b c 1 k a 1 1 k a 2)x1x2
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2 (1/2) c (x1p1 1 x2p2) 1 h (x1p2 2 x2p1) 2 kp1p2 (92)

where c , h , a 1, a 2, and b satisfy the relations

2 b c Ç 1 b Ç c 1 k ( a Ç 1 1 a Ç 2) 5 2 2( a 1 2 a 2) h : h Ç 5 k ( a 1 2 a 2)

(93)

Note that when k 5 0 (or h 5 const) the result (93) reduces to (68), but

only after setting c 6 5 c 7 5 0 in the latter.

4.2.2. Generalized TD Oscillators

Now we consider a generalized form of (89) in which the coupling term

b (t)x1x2 is replaced by an arbitrary function b (t) f , namely

H 5 (1/2)( p2
1 1 p 2

2) 1 a 1(t)x
2
1 1 a 2(t)x

2
2 1 b (t) f (x1, x2)

[ G 1 1 G 2 1 a 1(t) G 3 1 a 2(t) G 4 1 b (t) G 5 (94)

with G 1, G 2, G 3, and G 4 as defined before [cf. equation (90a)] and G 5 5 f (x1,

x2). As a result of this new definition of G 5 the affected (nonvanishing)

Poisson brackets can be computed as(48)

[ G 1, G 5]PB 5 2 p1
- f
- x1

; [ G 2, G 5]PB 5 2 p2
- f
- x2 (95)

[ G 5, G 6]PB 5 2 2x1
- f
- x1

; [ G 5, G 8]PB 5 2 2x2
- f
- x2

In this case, G 7 and G 9 are absent from the Lie algebra and G 10 defined in
the earlier case from [ G 2,G 7]PB 5 G 10 is also absent. Finally, one is left here

only with seven coupled equations in the l ’ s, namely

l Ç 1 5 4 l 6 (96a)

l Ç 2 5 4 l 8 (96b)

l Ç 3 5 2 4 a 1 l 6 (96c)

l Ç 4 5 2 4 a 2 l 8 (96d)

l Ç 5 f 5 ( b l 1 2 l 5)p1
- f
- x1

1 ( b l 2 2 l 5)p2
- f
- x2

2 2 b l 6x1
- f
- x1

2 2 b l 8x2
- f
- x2

(96e)
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l Ç 6 5 2 a 1 l 1 1 l 3 (96f)

l Ç 8 5 2 a 2 l 2 1 l 4 (96g)

As before, here we again make the ansatz l 1 5 l 2 5 c (t), and obtain

the solution for other l ’ s from (96). This gives rise to the constraining relations

( c È /4) 1 2 a 1 c Ç 1 a Ç 1 c 5 0 (97a)

( c È /4) 1 2 a 2 c Ç 1 a Ç 2 c 5 0 (97b)

and the form of the f equation (96e) as

l Ç 5 f 2 ( b c 2 l 5) 1 p1
- f
- x1

1 p2
- f
- x2 2 1

1

2
b c Ç 1 x1

- f
- x1

1 x2
- f
- x2 2 5 0 (98)

For the case when

l 5 5 b c (99)

two particular solutions of (98) (namely, the ones separable in x1 and x2

coordinates under addition and multiplication operations) lead(48) to interest-
ing cases:

(i)

f (x1, x2) 5 k1x
2 d
1 1 k2x

2 d
2 (100a)

(ii)

f (x1, x2) 5 k3(x1/x2)
c1x 2 d

1 1 k4(x2/x1)
c1x 2 d

2 (100b)

Here, c1 and ki (i 5 1, 2, 3, 4) are the separation and integration constants,

respectively, and the function d (t) is given by

d (t) 5 2 1 b Ç c /( b c Ç ) (101a)

which, after using the form c 5 c0( a 1 2 a 2)
2 1/2 [cf. equations’ (97)],

reduces to

d (t) 5 2 2 b Ç ( a 1 2 a 2)/ b ( a Ç 1 2 a Ç 2) (101b)

Now, it is not difficult to write down the invariants for the systems

corresponding to the cases (100a) and (100b), which, respectively, turn out

to be
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I 5 1±2 c ( p2
1 1 p 2

2) 1 ( 1±4 c
È 1 a 1 c )x 2

1 1 (1±4 c È 1 a 2 c )x 2
2

1 b c (k1x
2 d
1 1 k2x

2 d
2 ) 2 1±2 c Ê(x1 p1 1 x2 p2)

and

I 5 1±2 c ( p2
1 1 p 2

2) 1 (1±4 c È 1 a 1 c )x 2
1 1 (1±4 c È 1 a 2 c )x 2

2

1 b c [k3(x1/x2)
c1x 2 d

1 1 k4(x2/x1)
c1x 2 d

2 ] 2 1±2 c Ç (x1p1 1 x2 p2)

No doubt the solution of the PDE (98) can suggest further examples of
systems admitting the first invariant, but what is of importance here is the

rationale suggested by the present approach in terms of this equation regarding

the relative time dependence of the couplings in (94) vis-aÁ -vis the time

dependence of the exponent d . In this connection the following remarks are

in order:

Equation (101b) implies that the time dependence in d (t) arises mainly
from the fact that a 1(t) Þ a 2(t) in (94), i.e., for the oscillators with unequal

spring constants. Alternatively, if b Ç c 5 0 in (101a), then d becomes indepen-

dent of t and attains the value d 5 2. As a result, since c Þ 0, b Ç must be

zero, thereby implying b (t) 5 const (say b 0). This will lead to the systems

V (x1, x2, t) 5 a 1(t)x
2
1 1 a 2(t)x

2
2 1 b 10 x 2 2

1 1 b 20x
2 2
2 (102)

and

V (x1, x2, t) 5 a 1(t)x
2
1 1 a 2(t)x

2
2 1 b 10 (x1/x2)

c1x 2 2
1

1 b 20(x2/x1)
c1x 2 2

2 (103)

for which the invariants can also be constructed using the rationalization

method. In fact, the system (103) is of special interest from the point of view

of generalizing the Ermakov systems (cf. Section 6). By writing the cross

term in (103) as f 5 b 10 x m
1 x n

2 1 b 20x
n
1 x m

2 , one can notice that m 1 n 5
2 2. This is another important rationale for choosing the coupling terms in

the systems admitting quadratic invariants, and valid for both TD and
TID(41) systems.

4.3. PainleveÂMethod

There are not many applications of the PainleveÂconjecture (see, for

example, ref. 49) to study TD systems in 2D. However, the applications seem

to be straightforward and can be carried out more or less in the same manner

as is done for TID systems.(5)
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5. THIRD- AND HIGHER ORDER INVARIANTS

In view of the fact that there exist additional difficulties in dealing with

systems involving an explicit time dependence, not many attempts have been

made to construct their invariants of order higher than two. Here, we present

a brief derivation of some results in the form of PDEs whose solutions would

directly provide systems admitting the third- or fourth-order invariants in

both one and two dimensions. No doubt the method of Feix et al.,(38) based
on the use of self-similar techniques, also provides invariants of higher order

in momenta, but it seems that only a restricted class of potentials (cf. Section

3.6) can be studied using this method. Therefore, we continue with the more

general method, i.e., the rationalization method.

5.1. Higher Order Invariants in One Dimension

We consider the system (26) and use the ansatz (25) along with the

recursion relation (27).

5.1.1. Third-Order Invariants

For this case, in addition to (27c) and (27d), we also have(29) other PDEs

from (27) as

( - b3/ - x) 5 0 (104a)

3( - b2/ - x) 1 ( - b3/ - t) 5 0 (104b)

2( - b1/ - x) 1 ( - b2/ - t) 2 b3( - V / - x) 5 0 (104c)

The first two equations, respectively, provide

b3 5 c 1(t), b2 5 2 (1/3) c Ç 1x 1 c 2(t) (105)

Substituting these results for b3 and b2 in (104c) and integrating the resultant

equation, one obtains

b1 5 (1/12) c È 1x 2 2 (1/2) c Ç 1x 1 (1/2) c 1V 1 c 3(t) (1058)

where the c i are arbitrary functions of t. Using these results for b1 and b2,

(27c) and (27d) can be used to eliminate b0 in favor of V by noting that
( - 2b0/ - x - t) 5 ( - 2b0/ - t - x). This will lead to a general ª potentialº equation

for the third-order invariants

1±2 c 1V ( - 2V / - x 2) 1 [(1/12) c È 1x
2 2 1±2 c Ç 2x c 3]( - 2V / - x 2)

1 [1±2 c 1( - V / - x)2 1 1±2 ( c È 1x 2 3 c Ç 2)]( - V / - x) 1 (1±3 c Ç 1x 2 c 2)
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3 ( - 2V / - x ? - t) 1 1±2 c 1( - 2V / - t 2) 1 c Ç 1( - V / - t) 1 1±2 c È 1 V

1 [(1/12) c
? ? ? ?

1x
2 2 1±2 c

? ? ?
2x 2 c È 3] 5 0 (106)

Clearly the solution of this nonlinear equation is difficult. However, we notice

from (1058) that c 1(t) 5 2( - 3b1/ - x 3)/( - 3V / - x 3), which implies the separability

of b1 and also of V in x and t variables to the extent that the ratio ( - 3b1/ - x 3)/
( - 3V / - x 3) is only a function of t. For this reason we choose

b1(x, t) 5 f (t)v (t), V (x, t) 5 (2f (t)/ c 1)v (t) (107)

Such a choice would reduce(29) the potential equation (106) to a simpler form

(1/v)(d (vdv/dx)/dx) 1 [( fÇ c 1 2 c3f )(1±3c3x 2 c4)/ c 1f
2]

3 (1/v)(dv/dx) 1 ( c 1fÈ / 2f 2) 5 0 (108)

where c3 and c4 are arbitrary constants of integration. Finally, an integrable

system of the form

V (x, t) 5 at 2 4/3(k4x 1 k5)
1/2 (109)

admitting the invariant

I 5 2 (1/2)[ f 2 (k4x 1 k5)
1/2xÇ ]2 1 (1/6) c 1xÇ

3 (110)

is obtained.(29) Here f (t) , t 2 1/3 and c 1(t) , t.

5.1.2. Fourth-Order Invariants

In this case, in addition to (27c), (27d), and (104c), from (27) we also have

( - b4/ - x) 5 0 (111a)

4( - b3/ - x) 1 ( - b4/ - t) 5 0 (111b)

3( - b2/ - x) 1 ( - b3/ - t) 2 b4( - V / - x) 5 0 (111c)

As before, (111a) and (111b) lead to

b4 5 s1(t) (112a)

b3 5 2 (1/4)sÇ 1x 1 s2(t) (112b)

which in turn provide the solution of (111c) as

b2 5 (1/24)sÈ 1x
2 2 (1/3)sÇ 2x 1 (1/3)s1V 1 s3(t) (112c)

where the si are some arbitrary functions of t. As before, using these expres-

sions for b2, b3, and b4, the integration of (104c) yields
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b1 5 ( 2 1/144) s? ? ? 1x
3 1 (1/12)sÈ 2x

2

2 (1/24)sÇ 19 2 (1/6)s1( - 9/ - t)

2 (1/2)sÇ 3x 2 (1/2)[(1/4) sÇ 1x 2 s2]V 1 s4(t) (112d)

where 9 5 * V dx and s4 is another arbitrary function of t. As for the third-

order case, b0 from (27c) and (27d) can be eliminated in favor of V again

by noting that ( - 2b0/ - x ? - t) 5 ( - 2b0 / - t ? - x). This will, in fact, determine
the ª potentialº equation for the fourth-order invariants.

[(1/144)s (3)
1 x 3 2 (1/12)s (2)

2 x 2 1 (1/2)sÇ 3x 2 s4 1 (1/24)sÇ 19

1 1±6 s1 ( - 9/ - t) 1 1±2 (1±4 sÇ 1x 2 s2)V ] ( - 2V / - x 2)

1 1±2 (1±4 sÇ 1x 2 s2)( - V / - x)2 1 1±2 [1±8 s (3)
1 x 2 2 s (2)

2 x

1 3s3 1 sÇ 1V 1 s1( - V / - t)] ( - V / - x) 1 [(1/24)s (2)
1 x 2 2 1±3 sÇ 2x

1 s3 1 1±3 s1V ] ( - 2V / - x ? - t) 1 [(1/144)s (5)
1 x 3 2 (1/12)s (4)

2 x 2

1 1±2 s (3)
3 x 2 s (2)

4 1 (1/24) s (3)
1 9 1 1±4 s (2)

1 ( - 9/ - t)

1 3±8 sÇ 1( - 29/ - t 2) 1 1±6 s1( - 39/ - t 3) 1 1±2 (1±4 s (3)
1 x 2 s (2)

2 )V

1 (1±2 s (2)
1 x 2 sÇ 2)( - V / - t) 1 1±2 (1±4 sÇ 1 x 2 s2)( - 2V / - t 2)] 5 0 (113)

where the superscript numbers in parentheses of the si represent the order of

time derivatives of the si. Note that the potential equation (113) is a nonlinear,

integro-PDE whose solution in principle would directly provide the integrable

systems admitting fourth-order invariants.

As before, by writing b2(x, t) and V(x, t) as separable functions in x and
t variables as

b2(x, t) 5 g (t)w (x), V (x, t) 5 (3g (t)/s1)w (x) (114)

the potential equation (113) can be expressed in a reduced form

(gÇ s1 2 3±4 gsÇ 1)Ww9 1 3g (1±4 sÈ 1x 2 s2)(ww8)8

1 (5gÇ s1 2 2gsÇ 1) ww8 1 (1/g)(1±3 g? ? ? s1 2 1±4 gÈ sÇ 1s2

1 1±2 gÇ sÇ 21 2 sÇ 31g /2s1)W 1 (1/g)(1±4 sÇ 1x 2 s2)

(gÈ s1 2 2sÇ 1gÇ 1 2gsÇ 21 /s1) w 5 0 (115)

where W 5 * w dx and s4 (t) is taken to be zero, and the primes on w
represent the derivatives w.r.t. x. Equation (115) appears to be difficult even

for a trivial case like the one discussed in the third-order case.
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5.2 Third-Order Invariants in Two Dimensions

As the complexity in the derivation of an invariant for TD systems

increases with respect to both its order and the dimensionality of the system,

here we present the derivation only of third-order invariants by using the
rationalization method in terms of the complex coordinates. The correspond-

ing results for the Cartesian case can be derived in an analogous manner.

We consider the system described by the Lagrangian (74) and now make

an ansatz for the third-order invariant [cf. equation (56)] as

I 5 a0 1 ai j i 1 (1/2)aij j i j j 1 (1/6)aijk j i j j j k (116)

where j i 5 ZÇ and j 2 5 ZÇ , and a0, ai , aij, aijk are functions of Z, Z, and t as
before. For the invariance of I, one uses (5) and (6) and obtains an identity.

Now equating the coefficients of the powers of j 1 and j 2 and their products

to zero after accounting for the proper symmetrization in the resultant expres-

sion, one obtains the following relations for the a’ s as before:

aijk,l 1 ajkl,i 1 akli,j 1 alij,k 5 0 (117)

aij,k 1 ajk,i 1 aki,j 1 ( - aijk / - t) 5 0 (118)

ai,j 1 aj,i 1 ( - aij/ - t) 1 aijkj Ç k 5 0 (119)

a0, i 1 - ai/ - t 1 aij j Ç j 5 0 (120)

( - a0/ - t) 1 ai j Ç i 5 0 (121)

Now, using j Ç 1 5 2 2( - V / - Z), j Ç 2 5 2 2( - V / - Z ), we obtain that (117)±(121)

yield the following set of coupled PDEs:

( - a111 / - Z ) 5 0 (122a)

( - a222 / - Z ) 5 0 (122b)

( - a111 / - Z ) 1 3( - a112 / - Z ) 5 0 (122c)

( - a112 / - Z ) 1 ( - a122 / - Z ) 5 0 (122d)

( - a222 / - Z ) 1 3( - a122 / - Z ) 5 0 (122e)

3( - a11 / - Z ) 1 ( - a111 / - t) 5 0 (122f)

( - a11 / - Z ) 1 2( - a12 / - Z ) 1 ( - a112 / - t) 5 0 (122g)

( - a22 / - Z ) 1 2( - a12 / - Z ) 1 ( - a122 / - t) 5 0 (122h)

3( - a22 / - Z ) 1 ( - a222 / - t) 5 0 (122i)
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2( - a1/ - Z ) 1 ( - a11 / - t) 5 2a111( - V / - Z ) 1 2a112( - V / - Z ) (122j)

2( - a2/ - Z ) 1 ( - a22 / - t ) 5 2a122( - V / - Z ) 1 2a222( - V / - Z ) (122k)

( - a1/ - Z ) 1 ( - a2/ - Z ) 1 ( - a12 / - t) 5 2a112( - V / - Z ) 1 2a122( - V / - Z ) (122l)

( - a0/ - Z ) 1 ( - a1/ - t) 5 2a11( - V / - Z ) 1 2a12( - V / - Z ) (122m)

( - a0/ - Z ) 1 ( - a2/ - t) 5 2a12( - V / - Z ) 1 2a22( - V / - Z ) (122n)

( - a0/ - t) 5 2a1( - V / - Z ) 1 2a2( - V / - Z ) (122o)

Note that for aijk 5 0 in (116), these 15 equations reduce to 10 equations

analyzed earlier (Sect. 4.1.2) for the second-order case. Now, we present the

solutions of these equations for determining the coefficient functions a’ s.

5.2.1. Determination of aijk

Clearly, (122a) and (122b) imply that a111 [ a111(Z, t) 5 C 1(Z, t) and
a222 5 a222(Z, t) 5 F 1(Z, t). On differentiating (122c) w.r.t. Z and using

(122d), one obtains

( - 2a111 / - Z 2) 2 3( - 2a122 / - Z 2) 5 0

and similarly, the differentiation of (122e) w.r.t. Z yields

( - 2a222 / - Z 2) 1 3( - 2a122 / - Z ? - Z) 5 0

Further differentiation of these two equations w.r.t. Z and Z, respectively,
after noting that ( - 3a122/ - Z ? - Z 2) 5 ( - 3a122/ - Z 2 ? - Z), leads to

( - 3a111 / - Z 3) 5 2 ( - 3a222 / - Z 3)

5 a function of t alone [say s 1(t)] (123)

If we assume the separability of C 1 and F 1 as

C 1 (Z, t) 5 c 1(Z ) f1(t); F 1(Z, t) 5 f 1(Z )g1(t)

then the solution to (123) can be obtained immediately as

a111 5 (1/6) s 1Z
3 1 (1/2) s 2Z

2 1 s 3Z 1 s 4 (124a)

a222 5 2 (1/6) s 1Z
3 1 (1/2) s 5Z

2 1 s 6 Z 1 s 7 (124b)

The coefficient functions a112 and a122 can be obtained in the same way from

the integrations of (122c) and (122e) as
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a112 5 2 1±6 s 1Z
2Z 2 1±3 s 2ZZ 1 1±6 s 5Z

2 2 1±3 s 3 Z 1 s 8 Z 1 s 9 (124c)

a122 5 1±6 s 1Z
2Z 2 1±3 s 5 ZZ 1 1±6 s 2Z

2 2 1±3 s 6 Z 1 s 8 Z 1 s 10 (124d)

Regarding the notations, note that throughout this subsection the arbitrary func-
tions C i are functions of Z and t, and F i are functions of Z and t; c i are functions

of Z alone, f i are functions of Z alone, and s i are functions of t alone. Further,

s 1 is the separation function and other s i are arbitrary functions of integration.

5.2.2. Determination of aij

To obtain aij we use (124a) and (124b) in (122f) and (122i), respectively,

and by integrating the resultant equations we obtain the expressions for a11

and a22 as

a11 5 2 (1/18) s Ç 1ZZ 3 2 1±6 s Ç 2ZZ 2 2 1±3 s Ç 3 ZZ 2 1±3 s Ç 4 Z 1 C 3(Z, t) (125a)

a22 5 (1/18) s Ç 1Z
3Z 2 1±6 s Ç 5Z

2Z 2 1±3 s Ç 6 ZZ 2 1±3 s Ç 7 Z 1 F 3(Z, t) (125b)

These expressions, when used respectively in (122g) and (122h) along with

(124c) and (124d), yield the two expressions for a12 involving some arbitrary
functions, C 3, C 4 and F 3, F 4. A comparison of these two expressions for

a12 provides the identity

1±6 s Ç 1Z
2Z 2 2 1±4 s Ç 5Z

2Z 1 1±4 s Ç 2Z
2Z 1 1±6 s Ç 3Z

2 2 1±6 s Ç 6Z
2

2 s Ç 8 ZZ 2 1±2 s Ç 9 Z 1 1±2 s Ç 10 Z 2 1±2 Z ( - C 3/ - Z)

1 C 4 1 1±2 Z( - F 3/ - Z ) 1 F 4 5 0 (126)

From this identity one immediately obtains

s Ç 1 5 0 or s 1 5 const (say c1) (127a)

and subsequently

( - 3 C 3/ - Z 3) 5 2 (1/2) s Ç 5; ( - 3 F 3/ - Z 3) 5 2 (1/2) s Ç 2

which imply

C 3(Z, t) 5 ( 2 1/12) s Ç 5 Z 3 1 (1/2) s 11Z
2 1 s 12Z 1 s 13

F 3(Z, t) 5 ( 2 1/12) s Ç 2 Z 3 1 (1/2) s 14Z
2 1 s 15Z 1 s 16

from which C 4 and F 4 in (126) can be set as

C 4 (Z, t) 5 1±6 s Ç 6Z
2 2 1±2 s Ç 10Z; F 4(Z, t) 5 1±6 s Ç 3Z

2 2 1±2 s Ç 9Z

With these results, the two expressions for a12 become
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a12 5 (1/6) s Ç 2ZZ 2 1 (1/24) s Ç 5Z
2Z 1 (1/6) s Ç 3Z

2 1 (1/6) s Ç 6Z
2

2 (1/2) ( s Ç 8 1 s 11)ZZ 2 (1/2)( s Ç 9 1 s 12)Z 2 (1/2) s Ç 10Z

and

a12 5 (1/24) s Ç 2 ZZ 2 1 (1/6) s Ç 5ZZ 2 1 (1/6) s Ç 3Z
2 1 (1/6) s Ç 6 Z 2

1 (1/2)( s Ç 8 2 s 14)ZZ 2 (1/2)( s Ç 10 1 s 15)Z 2 (1/2) s Ç 9 Z

Uniqueness of these two expressions will further require that

s Ç 2 5 s Ç 5 5 0 (127b)

s 12 5 s 15 5 0 (127c)

2 s Ç 8 1 s 11 2 s 14 5 0 (127d)

These equations imply s 2 5 const (say c2) and s 5 5 const (say c5).

Finally, the coefficients a11, a22, and a12 become

a11 5 2 1±3 s Ç 3ZZ 2 1±3 s Ç 4Z 1 1±2 s 11Z
2 1 s 13 (128a)

a22 5 2 1±3 s Ç 6 ZZ 2 1±3 s Ç 7 Z 1 1±2 s 14 Z 2 1 s 10 (128b)

a12 5 1±6 s Ç 3 Z 2 1 1±6 s Ç 6 Z 2 2 1±2 s Ç 9 Z 2 1±2 s Ç 10 Z (128c)

and the expressions for aijk from (124) take the form

a111 5 1±6c1Z
3 1 1±2 c2 Z 2 1 s 3Z 1 s 4 (129a)

a222 5 2 1±6c1 Z 3 1 1±2 c 5Z
2 1 s 6 Z 1 s 7 (129b)

a112 5 2 1±6c1Z
2Z 2 1±3c2 ZZ 1 1±6c5 Z 2 2 1±3 s 3 Z 1 s 8 Z 1 s 9 (129c)

a122 5 1±6c1Z 2Z 2 1±3c5 ZZ 1 1±6c2 Z 2 2 1±3 s 6 Z 2 s 8 Z 1 s 10 (129d)

5.2.3. Derivation of the ª Potentialº Equations

For the terms involving the potential in (122), we introduce the following

notations for convenience:

F 5 a112( - V / - Z ) 1 a122( - V / - Z )

G1 5 a122( - V / - Z ) 1 a222( - V / - Z )

G2 5 a111( - V / - Z ) 1 a112( - V / - Z )
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R 5 a11( - V / - Z ) 1 a12( - V / - Z )

S 5 a12( - V / - Z ) 1 a22( - V / - Z ) (130)

Differentiating (122l) w.r.t. Z and using (122k) for ( - a2/ - Z), one obtains

( - 2a1/ - Z2 ) 5 2 - [( - a12 / - Z ) 2 1±2 ( - a22 / - Z )]/ - t 1 2( - F / - Z ) 2 ( - G1/ - Z )

which, after using (128b) and (128c), reduces to

( - 2a1/ - Z2) 5 2 1±2 ( s È 6Z 2 s Ç 14Z 2 s È 10) 1 2( - F / - Z ) 2 ( - G1/ - Z ) (131)

Similarly (122l), after using (122j), (128a), and (128c), becomes

( - 2a2/ - Z 2) 5 2 1±2 ( s È 3Z 2 s È 11Z 2 s È 9) 1 2( - F / - Z ) 2 ( - G2/ - Z ) (132)

Thus, the coefficients a1 and a2 can be computed by integrating (131) and

(132), respectively.

On differentiating (122m) and (122n) w.r.t. Z and Z, respectively, and

then using ( - 2a0/ - Z ? - Z) 5 ( - 2a0/ - Z ? - Z ) for eliminating a0, one obtains

-
- t

( - a1/ - Z) 2
-
- t

( - a2/ - Z ) 5 2[( - R / - Z) 2 ( - S / - Z )] (133a)

Similarly, differentiation of (122l) w.r.t. t gives

-
- t

( - a1/ - Z ) 1
-
- t

( - az/ - Z ) 5 2 ( - 2a12 / - t 2) 1 2( - F / - t) (133b)

Now, (133a) and (133b) give rise to

-
- t

( - a1/ - Z ) 5 2 (1/2)( - 2a12 / - t 2) 1 ( - F/ - t) 1 [( - R / - Z ) 2 ( - S / - Z )] (134a)

-
- t

( - a2/ - Z ) 5 2 (1/2)( - 2a12 / - t 2) 1 ( - F/ - t) 1 [( - R / - Z ) 2 ( - S / - Z )] (134b)

In order to eliminate a1 and a2 from (134a) and (134b), we differentiate them

w.r.t. Z and Z, respectively, and then correspondingly use the results (131)

and (132). This gives (50) the following pair of ª potentialº equations:

( - 2F / - t ? - Z ) 2 ( - 2G1/ - t ? - Z ) 2 (1/2)( s? ? ? 6Z 2 s È 14 Z 2 s? ? ? 10

5 ( - / - Z )[( - R / - Z ) 2 ( - S / - Z )] 2 (1/2)( - 3a12 / - Z ? - t 2) (135)

and
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( - 2F / - t ? - Z ) 2 ( - 2G2/ - t ? - Z ) 2 (1/2)( s? ? ? 3Z 2 s È 11Z 2 s? ? ? 9)

5 2 ( - / - Z )[( - R / - Z) 2 ( - S / - Z )] 2 (1/2)( - 3a12 / - Z ? - t 2) (136)

Alternative and somewhat simple-looking forms of these equations can

be obtained by differentiating (135) and (136) once again w.r.t. Z and Z,

respectively, and then noting that

- 2

- Z ? - Z
[( - R / - Z ) 2 ( - S / - Z )] 5

- 2

- Z ? - Z
[( - R / - Z ) 2 ( - S / - Z )]

and

( - 4a12 / - Z ? - Z ? - t 2) 5 ( - 4a12 / - Z ? - Z ? - t 2) 5 0

[cf. equation (128c)]. Equations (135) and (136) reduce to

-
- t

[( - 2G1/ - Z 2) 1 ( - 2G2/ - Z2)] 2 2( - 3F / - t ? - Z ? - Z )

5 (1/2)( s È 11 1 s È 14) (1358)

-
- t

[( - 2G1/ - Z 2 ) 2 ( - 2G2/ - Z2 )] 1 2
- 2

- Z ? - Z
[( - R / - Z ) 2 ( - S / - Z )]

5 2 (1/2)( s È 11 1 s È 14 ) (1368)

Recall that F, G1, G2, R, and S involve derivatives of the potential function

[cf. (130)] V. As a result, the solutions of (135) and (136) [or of (1358)
and (1368)] would directly provide systems admitting the third-order first

invariant. Further, these solutions have to be in conformity with (122m),
(122n), and (122o). This, in fact, will help in fixing the other arbitrary

functions as before.

5.2.4. Results in the Cartesian Case

It is not difficult to derive the ª potentialº equations similar to (1358)
and (1368) in Cartesian coordinates. The results are practically the same as

(1358) and (1368) with the coefficient functions same as defined in (128) and
(129), but now Z and Z are replaced by x2 and x1 coordinates, respectively.

For this purpose the other changes to be noted are (i) the replacement of - R /

- Z 2 - S / - Z in (1368) by - R / - x1 2 - S / - x2, and (ii) the revised definitions

of F, G1, G2, R, and S as
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F 5 a112( - V / - x1) 1 a122( - V / - x2)

G1 5 a122( - V / - x1) 1 a222( - V / - x2)

G2 5 a111( - V / - x1) 1 a112( - V / - x2)

R 5 a11( - V / - x1) 1 a12( - V / - x2)

S 5 a22( - V / - x2) 1 a12( - V / - x1)

6. ERMAKOV SYSTEMS

6.1. Generalized Ermakov Systems

In Section 3.2, the applications of the Ermakov method, employed ini-

tially only for the simple TDHO problem, to more generalized systems were

already pointed out in terms of (30). As a special case, in this connection,
while x (t) satisfies (30a), r (t) is found(28) to satisfy

r È 1 v 2(t) r 5 (1/x r 2) o
i

ci (x / r )2mi 2 1, (i 5 1, 2) (137)

where ci and mi are arbitrary constants. For i 5 1 and 2, and with m1 5
(m 2 2)/2, m2 5 (2m 2 2)/2, equation (137) becomes

r È 1 v 2(t) r 5 c1x
m 2 4 r 1 2 m 1 c2

2m 2 4 r 1 2 2m (138)

Among other generalizations of Ermakov systems considered by Reid

and Ray,(32) one is in relation with the nonlinear superposition law for the

solutions of higher order nonlinear equations. We avoid the discussion of such

generalizations here. It may be mentioned that all the above generalizations of
Ermakov systems are essentially for 1D TD systems, particularly for the 1D

TDHO, and r (t) appears as an auxiliary variable needed to provide the

invariant for the corresponding TD system in (1 1 1) dimensions. On the

other hand, r (t) also plays a specific role while looking for a physical interpre-

tation of the derived invariant (cf. Section 8). In any case, it does not imply

the generalization of Ermakov systems to higher space dimension in the
present context of (2 1 1) dimensions.

Other generalizations of Ermakov systems have recently been considered

by Leach(51) and Athorne.(52) Leach(51) finds an explanation for the nature of

the Ermakov system described by

xÈ 1 1 v 2(t)x1 5 g1(x2/x1)/x
3
1 (139a)

xÈ 2 1 v 2(t)x2 5 f1(x2/x1)/ x 3
2 (139b)
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in terms of the symmetry algebra sl(2, 5). In this case, a transformation of

time and space variables, namely T 5 cot( * r 2 2 dt), X 5 r 2 1 x1 csc T, Y 5
r 2 1x2 csc T, eliminates v 2(t) from (139), and the newly introduced variable
r is found to satisfy an equation of the type (15) with k 5 1. The generalized

Ermakov systems are really Cartesian forms of a system of equations, but for

their deeper understanding from symmetry considerations, the corresponding

polar forms(51)

rÈ 2 r u Ç 2 5 F( u )/r 3; r u È 1 2rÇ u Ç 5 G ( u )/r 3 (140)

turn out to be more convenient. In fact, the symmetries explored, in this case

G1 5 - / - t; G2 5 2t ( - / - t) 1 r ( - / - r); G3 5 t 2( - / - t) 1 tr( - / - r)

(141)

correspond, respectively, to time-translation, self-similar, and conformal

transformations. Interestingly, if the system has Hamiltonian structure [the

necessary condition for this is that G 5 2 1±2 ( - F / - u ) in (140)], then the angular

component of the equations of motion (140) directly gives rise to the Ermakov

invariant, i.e.,

I 5 1±2 (r 2 u Ç )2 2 # G ( u ) d u 5 1±2 [p 2
u 1 F ( u )] (142)

Not only this, the polar forms also suggest an easy way to generalize

the Ermakov systems to higher dimensions. For example, in the 3D case,
one can write(51) the equations of motion possessing the sl(2, 5) symmetry as

rÈ 2 r u Ç 2 2 r sin2 u f Ç 2 5 F ( u , f )/r 3

r u È 1 2rÇ u Ç 2 r f Ç 2 sin u cos u 5 G ( u , f )/r 3 (143)

r sin u f È 1 2rÇ f Ç sin u 1 2r u Ç f Ç cos u 5 R ( u , f )/r 3 sin u

The system has a Hamiltonian provided

G ( u , f ) 5 2 (1/2)( - F / - u ), R ( u , f ) 5 2 (1/2)( - F / - f )

This leads to the potential term as V 5 F ( u , f )/2r 2. The first invariant for

this system was derived by Leach.(51) For further studies of 3D systems we

refer to the recent work of Govinder and Leach.(53)

Athorne (52) makes use of the symmetry algebra of Leach and analyzes

a Kepler±Ermakov system of the type
-

xÈ 1 v 2(t)
-

x 5 v (
-

x )r 3 by setting v 2(t)
5 0. Another interesting system studied in this context is that of coupled

Pinney equations(54)
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xÈ 1 1 v 2(t)x1 5 b x 2 3
1 2 a x1 x 2 4

2 (144a)

xÈ 2 1 v 2(t)x2 5 d x 2 3
2 2 g x2 x 2 4

1 (144b)

In this case, however, there remains,(52) in general, a difficulty of finding a

Hamiltonian structure. In the absence of such a structure the system does

not warrant much physical interest. For example, for the system (144) the
Hamiltonian structure exists only for a 5 3 d , g 5 3 b and with a kinetic

term of hardly any physical interest. In spite of the fact that the invariant

associated with this system can be constructed explicitly, this system does

not turn out(52) to be integrable even for v (t) 5 const, i.e., even in a TID

case. Depending upon the character of their superposition laws [i.e., on the

nature of the functions f1 and g1 in (139)] such as rational, algebraic, or
automorphic, etc., the Ermakov systems can also be classified. For such

details, we refer to the work of Athorne (55) and Govinder et al.(56)

It is now clear that the Ermakov systems could be of both typesÐ those

which have Hamiltonian structure and those which do not have such a struc-

ture. From the recent group-theore tic studies of generalized coupled systems

by Govinder and Leach,(53) it appears that there can further be two separate
situationsÐ one in which the system admits an invariant of angular momentum

type (i.e., Ermakov type(30)) and another in which the invariant is of energy

integral type (i.e., Lewis type(18)). However, we do not treat such details here.

6.2. New Ermakov-Type Systems

The variable x2(t) in (144) can, in principle, be regarded as r (t) of (15)

or of (138) and is in fact a variable in the second space dimension. On the

other hand, the system studied by Leach(51) [cf. (139)] reduces to the Ray

and Reid form (30) on redefining g1 and f1 as

g1(x2/x1) 5 (x1/x2)g (x1/x2)

f1(x2/x1) 5 (x2/x1) f (x2/x1)

but becomes structurally different from (3.20) in the sense that the r equation

now appears as a by-product of the transformation. Thus, (139) and (144)

describe certain TD coupled oscillators in 2D (with equal spring constants

along each dimension), but without any auxiliary equation. It may be of

interest to look for Ermakov or Ermakov-type systems which remain integ-

rable and also retain the Hamiltonian structure. In fact, the conditions under
which the Ermakov system (30) is also a Hamiltonian system are investigated

by Cervero and Lejarreta,(57) but by treating the auxiliary variable r on a par

with the space variable x. Recently, inspired by the results of the dynamical

algebraic approach (cf. Section 4.2), the author has proposed (58) a class of
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Ermakov-type systems in 2D which (i) deals with unequal but related spring

constants, (ii) ensures in general a Hamiltonian structure, (iii) admits second-

order invariants, (iv) can involve fractional powers in the coupling terms,
and (v) involves a pair of auxiliary equations in a natural manner. All these

features could be important in characterizing new Ermakov-type systems

which in fact are capable of describing(58) TD anharmonic and anisotropic

oscillators in 2D.

Here we just draw attention to the systems (102) and (103), which are

special cases of the system described by the Lagrangian

L 5 1±2 (xÇ 21 1 xÇ 22) 2 a 1(t)x
2
1 2 a 2(t)x

2
2 2 b 10x

2 2 2 n
1 x n

2 2 b 20x
n
1x

2 2 2 n
2 (145)

with the corresponding pair of coupled equations of motion

xÈ 1 1 2 a 1(t)x1 5 (n 1 2) b 10x
2 3 2 n
1 x n

2 2 n b 20x
n 2 1
1 x 2 2 2 n

2

xÈ 2 1 2 a 2(t)x2 5 2 n b 10x
2 2 2 n
1 x n 2 1

2 1 (n 1 2) b 20x
n
1 x 2 3 2 n

2 (1468)

The first invariant for this system is given by(58)

I 5 1±2 c ( p2
1 1 p 2

2) 1 (1±4 c È 1 a 1 c )x 2
1

1 (1±4 c È 1 a 2 c )x 2
2 1 b 10 c x 2 2 2 n

1 x n 2 1
2 1 b 20 c x n

1 x 2 2 2 n
2

2 1±2 c Ç (x1 p1 1 x2 p2) (147)

where n is an arbitrary number; c is given as [cf. (97)] c 5 c ( a 1 2 a 2)
2 1/2,

and a 1 and a 2 are related through (73), as before.

7. INTEGRABILITY OF NONCENTRAL TD SYSTEMS IN
TWO DIMENSIONS

In the preceding sections we have constructed only one invariant for

both 1D and 2D TD systems. By constructing one invariant for 1D TD

systems, their integrability according to Whittaker’ s conjecture, is established,
but this is not so for the 2D TD systems. Although some efforts have been

made(59) in this context, the TID systems studied are those having some kind

of radial symmetry. In this latter case, particularly for the NC systems, there

remains a problem of obtaining the second invariant I2, which should not

only be independent of the first one I1 (in the sense of the involuting property),

but should also conform to the conditions (5) and (6) for the given Hamiltonian
H of the system. As a matter of fact one should have

[I1, H ]PB 1 ( - I1/ - t) 5 0 (148a)

[I2, H ]PB 1 ( - I2/ - t) 5 0 (148b)
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[I1, I2]PB 5 0 (148c)

where H is now given by

H 5 (1/2)( p2
1 1 p 2

2) 1 V (x1, x2, t) (149)

For this purpose, all the methods discussed in Section 4 in terms of the
simple polynomial ansatz start exhibiting complexity from the point of view

of constructing higher order invariants, but somehow do not even ensure the

existence of I2. In view of this complexity, although it becomes difficult to

question the viability of these methods as far as the construction of I2 is

concerned, the fact is that there does not exist a general criterion to guarantee
the integrability of the higher dimensional TD systems, even in terms of

nonpolynomial form of the invariant. In what follows, we make an attempt

to set some further restrictions on the coefficient functions in the polynomial

ansatz by assuming the existence of the second invariant I2 for TD systems

in 2D.

It is true that the expressions obtained for the coefficient functions in
general involve several arbitrary functions (of time)/constants which are

normally set in accordance with the parameters of the potential function V.

Very often, these arbitrary functions/constants outnumber the parameters of

the system and a lot of freedom is left to fix at least a few of them. Therefore,

the spirit in the following derivation is to impose some further restrictions

on the coefficient functions in view of (148) along with the ones already
required for the derivation of a particular invariant using the rationalization

method. The results are given only for a few cases differing mainly due to

the different orders of I1 and I2; in particular, we consider the cases (L, L),

(L, Q), (L, C), (Q, Q), (Q, C), and (C, C), where L, Q, and C, respectively,

stand for the linear, quadratic, or cubic nature of (I1, I2). We first give results
for the (C, C) case and subsequently obtain the results for other cases by

setting some of the coefficient functions to zero.

(i)(C, C) case: For the Hamiltonian (149) and the ansatze

I1 5 a0 1 ai j i 1 (1/2)aij j i j j 1 (1/6)aijkj i j j j k (150)

I2 5 b0 1 bi j i 1 (1/2)bij j i j j 1 (1/6)bijkj i j j j k (151)

while the requirements (148a) and (148b) lead to the same set of PDEs for

both functions a and b as (117)±(121), the use of (148c), in the spirit of (8),

gives rise to the restrictions on them as

aijk,mblnm 2 bijk,malnm 5 0 (152)

aijk,mblm 1 3aij,mbklm 2 bijk,malm 2 3bij,maklm 5 0 (153)
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aijk,mbm 1 3aij,mbkm 1 6ai,mbkjm 2 bijk,mam 2 3bij,makm 2 6bi,makjm 5 0 (154)

aij,mbm 1 2ai,mbjm 1 2a0, mbijm 2 bij,mam 2 2bi,majm 2 2b0, maijm 5 0 (155)

ai,mbm 1 a0, mbim 2 bi,mam 2 b0, maim 5 0 (156)

a0, mbm 2 b0, mam 5 0 (157)

In what follows we give similar results [mainly as special cases of

(152)±(157)] for situations when the pair of involuting invariants are of
different (but less than three) orders in momenta.

(ii) (Q, C) case: By setting aijk 5 0 throughout (150)±(157) one can

obtain the conditions on a’ s and b’ s. In fact, in this case, while (152) does

not appear and (156) and (157) remain the same, (153)±(155), respectively,

take the form

3aij,mbklm 2 bijk,malm 5 0

3aij,mbkm 1 6ai,mbkjm 2 bijk,mam 2 3bij,makm 5 0

aij,mbm 1 2ai,mbjm 1 2a0, mbijm 2 bij,mam 2 2bi,majm 5 0

(iii) (L, C) case: Set aijk and aij to zero in (150)±(157). As a result, (152)
and (153) are absent in this case and (157) remains unchanged, leaving

(154)±(156), respectively, in the form

6ai,mbkjm 2 bijk,mam 5 0

2ai,mbjm 1 2a0, mbijm 2 aij,mam 5 0

ai,mbm 1 a0, mbim 2 bi,mam 5 0

(iv) (Q, Q) case: Set aijk 5 bijk 5 0 in (150)±(157). Consequently, (152)

and (153) now do not appear and (156) and (157) remain the same. Equations

(154) and (155) in this case take the form, respectively,

aij,mbkm 2 bij,makm 5 0

aij,mbm 1 2ai,mbjm 2 bij,mam 2 2bi,majm 5 0

(v) (L, Q) case: Set aijk 5 aij 5 bijk 5 0 in (150)±(157). In this case,

(152)±(154) are absent and (157) remains unaffected. Equations (155) and

(156). respectively, now reduce to the forms

2ai,mbjm 2 bij,mam 5 0

ai,mbm 1 a0, mbim 2 bi,mam 5 0
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(vi) (L, L) case: For this simplest case, one sets aijk 5 aij 5 bijk 5 bij

5 0 in (150)±(157). as before, and obtains (156) in the form ai,mbm 2 bi,mam

5 0 in addition to (157). In this case (152)±(155) are absent.
Thus, some of the arbitrary functions/constants left undetermined in the

expressions for the a’ s in Section 5.2 (and now in the similar expressions

for the b’ s) for the third- (or lower) order case can be fixed with the help of

the above restrictions on the a’ s and b’ s. This suggests a possibility of getting

an involutively independent second invariant I2 for the system (149) and

thereby implies the integrability of this system.

8. THE ROLE AND SCOPE OF DYNAMICAL INVARIANTS IN
PHYSICAL PROBLEMS: INTERPRETATION AND
APPLICATIONS

The invariants when defined in a broader sense play an important role

in different branches of mathematics and mathematical physics, but somehow

the description of physical reality limits their applications in physics and

other allied sciences. In this respect while the role and the scope of the

dynamical invariants for the 1D systems have been discussed at great length
in the literature, they have not been explored to that extent for two- and

higher dimensional systems. Here, we briefly highlight some possible physical

interpretations known for the invariant for the TD HO system in 1D and

also discuss some physical situations in different branches of mathematical

sciences where not only does the role of these invariants become transparent,
but also their study may find some applications.

8.1. Physical Interpretations of Dynamical Invariants

From the point of view of having an in-depth study of a dynamical

system, no doubt it is desirable to know all of its permissible invariants if

they exist, but as far as the assigning of physical meaning to these invariants

is concerned, it has not been possible even for all the available ones. Further,
the assignment of such a physical meaning to a complicated mathematical

form of an invariant appears to be difficult, in general, but for the polynomial

form such possibilities have been explored. In particular, we list here some

plausible interpretations suggested for the form (14), which corresponds to

a TD HO system.

(i) According to Eliezer and Gray,(61) the constancy of I is equivalent
to the constancy of the angular momentum associated with the auxiliary

equation (15). The motion in a straight line described by xÈ 1 v 2(t)x 5 0 can

be viewed as the projection of the 2D motion of a particle under an attractive

center of force. Then the auxiliary motion is described by
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-
r
È

1 v 2(t)
-
r 5 0 (158)

where the vector
-
r has Cartesian components (x, y). Solving (158) radially

and transversely using polar coordinates ( r , u ), where r 5 |
-
r | , x 5 r cos u ,

and y 5 r sin u , we obtain

r È 2 r u Ç 2 1 v 2(t) r 5 0 (159a)

(1/ r )(d ( r 2 u Ç )/dt) 5 0 (159b)

The latter equation implies r 2 u Ç 5 l, where l is the angular momentum constant.

Now, using this result in (159a), one obtains the same equation as (15) with

k replaced by l 2, and after using x 5 r cos u , p 5 xÇ , the invariant I of (14)
reduces to I 5 (1/2)l 2. This shows that the constancy of I is equivalent to

the constancy of the angular momentum of the auxiliary motion.

(ii) Takayama(34) has discussed the physical meaning of the invariant

(14) for a real system Ð the forced betatron oscillation seen in accelerator

and storage rings. In this case the motion is described by an equation of the
type (19), where g (t) is the external TD force. The conserved quantity,

obtained for this system in the form of an ª affineº invariant, namely xÇ 1x2 2
x1xÇ 2 5 const, where x1 and x2 are arbitrary solutions of (13), does not serve

any purpose. On the other hand, a physical interpretation is sought for a form

similar to (14) using the concept of the equilibrium orbit well known in

accelerator physics. In fact, the equilibrium orbit (u, v) is the particular
solution of the canonical equations

(du/dt) 5 ( - H / - v) 5 v (160)

(dv/dt) 5 2 ( - H / - u) 5 2 v 2(t)u 1 g(t) (161)

where the Hamiltonian H has the form

H 5 (1/2)[p 2 1 v 2(t)x 2] 2 g(t)x (162)

The linear transformation x 5 u 1 X, p 5 v 1 P, converts the Hamiltonian

(162) into the form (12) and the corresponding invariant into the form (14),

for which the physical interpretation becomes easier.

(iii) Kaushal and Korsch(21) interpreted the invariant I as a mapping
between two similar dynamical systems satisfying a definite force law. It is

shown that the invariant I can be written in the form

I 5 (1/2)(k (x /x)2 1 k (x/x)2 1 (xxÇ 2 xÇ x)2) (163)

for the Hamiltonian
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H 5 (1/2)[ p 2 1 v 2(t) x 2 1 k / x 2] (164)

with x as the solution of the auxiliary equation

xÈ 1 v 2(t)x 5 k / x3 (165)

Note that (165) is actually the equation of motion corresponding to a similar

Hamiltonian system

H 5 (1/2)[ p2 1 v 2(t) x2 1 k / x2] (166)

where k in (164) and k in (166) are constants. Thus, the equation of motion
corresponding to H is the same as the auxiliary equation for H and vice

versa. Here, I shows the correspondence between the Hamiltonians H and

H. In fact, the invariant (163) is a common constant of motion w.r.t. H and

H, so that we have

[I, H ]PB(x,p) 5 [I, H]PB(x,p) (167)

i.e., I only generates a mapping between H and H. It may be mentioned that

in the spirit of the results of Section 4 [cf. (102)] the time dependence of k
and k can also be investigated in such an interpretation of I, of course, for

the corresponding 1D system.

(iv) An alternative interpretation of the invariant (163) can also be found
by realizing that it has a Hamiltonian structure(66) in terms of the newly

defined coordinate h and the time parameter t . Note that I in (163) can be

expressed in an alternative form as

I 5 (1/2)[k (x /x)2 1 k(x/x)2 1 x4((d /dt)(x /x))2] (168)

Now, after defining h 5 (x / x) and ! 2 d t 5 dt/ x2, 2I from (168) takes the form

2I 5 k h 2 1 k/ h 2 1 (1/2)(d h /d t )2 (169)

It is interesting to note that 2I here has a Hamiltonian structure with a potential

term very similar to that of H or H [cf. (164) and (166)] and a kinetic term

as (1/2)(d h /d t )2.

8.2. Applications of Dynamical Invariants

In this subsection we highlight the applications of the knowledge of
dynamical invariants (particularly that of the one derived for the TD HO

system in 1D) in the context of quantum mechanics, the Feynman propagator

(using the path-integral technique), cosmology, and relativistic TD Hamilto-

nian systems, obtaining the solution of a certain class of nonlinear differential



1840 Kaushal

equations, and of several other fields such as biophysics, plasma physics,

and field theories.

8.2.1. Quantum Mechanics

The solution of the classical TD HO problem has suggested an alternative

method for developing a SchroÈ dinger-type quantum mechanics and a WKB-

type semiclassical quantization condition. In particular, Korsch and his

coworkers (62,63) and Lee(64) have used these methods to obtain the solution
of some of the physical problems in an alternative manner. Some of these

aspects are discussed here briefly.

8.2.1.1. Milne’s Equation and WKB-Type Quantization. It can be seen

that just a simple replacement of r , x, t, and v (t) in the results for the
TD HO system [cf. (12)±(15)] by w, u, x, and k (x), respectively, leads to

following equations:

w9 (x) 1 k 2(x)w (x) 5 1/w3(x) (170)

u9 (x) 1 k 2(x)u (x) 5 0 (171)

If we use k (x) 5 [2m (E 2 V (x))/ " 2]1/2, then (171) yields the form of the

well-known SchroÈ dinger equation, and (170) takes the form which is known

as Milne’ s equation.(65) Now, if we know a particular solution of (170), the

general solution of (171) can be written as(62)

u (x) 5 cw(x) sin[ #
x

w 2 2(x8) dx8 2 b] (172)

where c and b are arbitrary constants. Alternatively, the general solution of

(170) can be obtained in terms of linearly independent solutions u1 and u2

of (171) as(28,61)

w (x) 5 [Au2
1(x) 1 Bu2

2(x) 1 2Cu1(x)u2(x)]1/2 (173)

where A, B, C are constants related to the Wronskian W of u1 and u2 by

AB 2 C 2 5 W 2 2.

Using the boundary condition on the wave function for the bound state

to exist, one arrives at

#
`

2 `

w 2 2(x)dx 5 (n 1 1 p ) (n 5 0, 1, 2, . . .) (174)

which is termed(62,64) Milne’s quantization condition for the energy levels En.

In the semiclassical limit ( " ® O) of Milne’ s equation [i.e., after neglecting
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the w9 terms in (170)] one obtains w (x) ’ [k (x)] 2 1/2, a result valid in the

classically allowed region but which breaks down at the classical turning

points. In this case the condition (174) takes the form

#
`

2 `

k (x) dx 5 1 n 1
1

2 2 p (n 5 0, 1, 2, . . .) (175)

where the missing p /2 term accounts for the contribution from the classically
forbidden regions. Several applications of this new quantization rule and its

possible generalization to the complex energy case are discussed by Korsch

and Laurent(62) and Korsch et al.(63)

8.2.1.2. Quantum Mechanics as a Multidimensional Ermakov Theory.
Lee(64) offers a new dimension to the application of the Milne quantization

condition and the Ermakov theory mentioned above. In particular, the close
connection between the classical Ermakov theory and Milne quantization

condition is exploited to the extent of finding a common mathematical frame-

work within which an explanation of both classical particle mechanics and

quantum wave mechanics can be sought. As a result, a physical interpretation

of the Ermakov invariant in terms of the theory of wave±particle duality is

suggested by Lee.(64) While it may be desirable to pursue several other
problems within this framework, the problems pertaining to quantum ray

optics and the hydrogen atom have already been looked into by Lee. As a

matter of fact in the multidimensional Ermakov theory, there seems to exist(66)

a common basis for both the SchroÈ dinger equation in quantum mechanics and

the Riccati-type equation satisfied by the superpotential in supersymmetric

quantum mechanics.

8.2.2. Feynman Propagator (Using the Path-Integral Technique)

The existence of an invariant for a dynamical system also simplifies the

calculation of the Feynman propagator. In fact the Feynman propagator,
while already containing the spirit of the quantum superposition principle

via integration over various paths, provides an alternative route from the

classical to the quantum description of a system. Lawande et al.(67±70) have

studied in detail the role played by the invariants in the propagator theory,

using a large class of potentials. It is noticed that a great simplification arises

in this case if the invariant is assumed to be of second order in momenta.
Further, explicit path-integral calculations have shown that the propagators

in general admit expansions in terms of the eigenfunctions of the invariant-

operator. This, in fact, allows the Feynman propagator to be expressed in

terms of the eigenfunctions of the Ermakov invariant in an exact manner.
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A variety of dynamical systems have been studied by Lawande and his

coworkers (67) by extending the propagator theory to several dimensions of

applications. For details we refer to the excellent review by Khandekar and
Lawande.(68) Here, we just demonstrate the use of the Ermakov invariant in the

calculation of the propagator for a simple system described by the Lagrangian

L 5 (1/2)xÇ 2 2 ( r È a / r 2 a È )x 1 ( r È /2 r )x 2 2 (1/ r 2)F ((x 2 a )/ r ) (176)

and which possesses a second-order invariant

I (x, p, t) 5 (1/2)[ r ( p 2 a Ç ) 2 r Ç (x 2 a )]2 1 F ((x 2 a )/ r ) (177)

Here, r (t), a (t), and F ((x 2 a )/ r ) are arbitrary functions of their arguments.

It is possible to write (176) in the form

L 5 (d x /dt) 1 L0 (178)

where L0 is a new Lagrangian given by

L0 5 (1/2) r 2[(d /dt) ((x 2 a )/ r )]2 2 (1/ r 2) F ((x 2 a )/ r )

and

x 5 ( r Ç /2 r )x 2 1 (( a Ç r 2 a r Ç )/ r )x 2 (1/2) # r 2[(d /dt) ( a / r )]2 dt

The Feynman propagator K (x9, t9; x8, t8), defined as the quantum mechanical

amplitude for finding a particle at the position x9 at the time t9 if the particle

had been at x8 at an earlier time t8, is expressed by

K (x 9, t 9;x 8 t8) 5 # exp((i / " ) #
t9

t 8

L dt) $x (t) (179)

where $x (t) is the usual Feynman differential measure. After carrying out
some lengthy calculations, the propagator K can be expressed as(69)

K (x9, t9; x8, t8) 5 ( r 8 r 9) 2 1/2 exp[(i / " ) ( x (t9)

2 x (t8))] K0 ( j 9, t 9; j 8, t 8) (180)

where

K0 ( j 9, t 9; j 8, t 8) 5 # exp((i / " ) #
t 9

t 8

L0 d t ) $ j (t)

with
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L0 [ L0 ( j , d j /d t ) 5 (1/2)(d j /d t )2 2 F ( j ) ( j 5 x / r )

Thus, it becomes clear that the propagator for the TD system is related

to the propagator for an associated TID system corresponding to the Lagran-

gian L0 in the new space-time variables ( j , t ). Further, note that the invariant
(177) is basically the Hamiltonian H0 associated with the Lagrangian L0.

Khandekar and Lawande(70) have also obtained the Feynman propagator in

an exact and closed form for NC potentials.

8.2.3. Cosmological Applications

The importance of dynamical invariants in the fields of cosmology

and astrophysics is well known. (11,26) In particular, Berger,(71) Misner,(72) and

Ray(73) have studied in detail the relationship between the particle number

present in a cosmological model and an adiabatic invariant. The knowledge

of invariants, in fact, offers an alternative for calculating the particle produc-

tion in cosmological models.
Here we discuss rather briefly the related adiabatic invariant, which is

defined as a semiclassical particle number, and the alternative method for

calculating the particle production in models with an initial singularity. Once

the particle number for each mode of the field is defined as an adiabatic

invariant, then it becomes interesting to relate this quantity to the parameters
of the field mode near the initial singularity. Following Berger,(71) the ampli-

tude f k for each mode k of a minimally coupled scalar field of mass m satisfies

f È k 1 v 2
k ( t ) f k 5 0 (181)

where t is a new time coordinate. In a regime in which the expansion or

contraction time scale of the universe greatly exceeds the period of the mode

k, the solution to (181) can be obtained(71) using the WKB approximation as

f WKB ’ v 1/2 A cos 1 #
t

v d t 8 1 z 2 1 v 2 1/2 B sin 1 #
t

v d t 8 1 z 2 (182)

where z is a constant phase and A, B are arbitrary constants. If the energy

of the mode k is formally defined as

E (t) 5 (1/2) ( f Ç 2 1 v 2(t) f 2) (183)

then in the WKB limit there exists(13) an adiabatic invariant N of the type

N 5 EWKB/ v , which in turn reduces to the form

N 5 (1/2)(A 2 1 B 2) (184)

On the other hand, Ray(73) makes use of the available form of the

invariant for the system (183) as
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I 5 (1/2)[( f / r )2 1 ( r f Ç 2 f r Ç )2] (185)

with r satisfying

r È 1 v 2(t) r 5 r 2 3 (186)

He, as before, identifies N of (184) with I in the adiabatic regime. In a model

that possesses an initial singularity at time t 5 ts such that v (ts) 5 0, the

invariant is expected to take the same form as (185) with f and r replaced
by f s and r s corresponding to t 5 ts , and the solutions of (181) and (186)

for this case are expressed as(73)

f 5 q0 1 p0 (t 2 ts); r 5 (1/ a )[1 1 a 4 (t 2 ts 1 ( b / a ))2]1/2 (187)

where q0, p0, a and b are integration constants. Further, use of these results

yields the invariant (185) in the form

N 5 (1/2)[ a 2 q 2
0 1 (1/ a 2 1 b 2)p 2

0 2 2 a b q0p0] (188)

Clearly, the modified definition of the constants A and B in (182) as

A 5 p0/ a and B 5 a q0 2 b p0 shows the equivalence of the forms (188) and

(184). Thus, the Ermakov invariant provides an interesting alternative for

calculating the particle production in cosmological models. Since it is an
exact invariant, its leading term in the adiabatic series is the particle number.

8.2.4. Relativistic TD Hamiltonian Systems

The role of classical dynamical invariants is also found to be important

in some special types of relativistic TD systems. Recently(74) there has been

an attempt to obtain the invariant for the system described by the Hamiltonian

H 5 ( p2 1 1)1/2 1 V (x, t) (189)

in the form I(x, p, t) [ C (V (x, t), p). The search for integrable systems
admitting such an invariant, following the method of Giacomini,(75) reduces

to the solution of the ª potentialº equation of the form

(dV/dF1) 1 f (V ) 1 F1/(F
2
1 1 1)1/2 5 0 (190)

where both F1 and f are arbitrary functions of V and are related. The invariants

corresponding to the three cases, namely f (V ) 5 1, f (V ) 5 V, and f (V ) 5
exp(V ), are obtained by Martin and Bouquet,(74) respectively, as
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I 5 P 1 9 1 ( p2 1 1)1/2 (191)

I 5 V (x, t) exp( p) 1 #
p

0

du ? u exp(u)/g (u)

and

I 5 {exp[ 2 V (x, t)] 2 p} exp[ 2 ( p2 1 1)1/2]

2 #
p

0

du ? u 2 exp[ 2 g (u)]/g (u)

where V (x, t) 5 9(x 1 t) and g (u) 5 (u 2 1 1)1/2. As an example, the case

of the TD relativistic HO system in the form

HR 5 ( p2 1 1)1/2 1 x 2/2t 2 (192)

has been analyzed. Interestingly, such a system does not turn out to be

analytically integrable, mainly due to the special nature of the kinetic term

in HR.

8.2.5. Solution of a Class of Nonlinear Differential Equations

Knowledge of invariants also helps in investigating the solution of a
particular class of nonlinear differential equation. Note that for the system

(damped TD HO)

xÈ 1 P (t)xÇ 1 Q (t)x 5 O (193)

the invariant turns out to be

I 5 h2(x / r )2 1 ( r Ç x 2 r xÇ ) exp F 2 #
t

O

P (t) dt G (194)

with r (t) satisfying

r È 1 P (t) r Ç 1 Q (t) r 5 (h2/ r 3) exp F 2 2 #
t

O

P (t) dt G (195)

Eliezer and Grey(61) put these simple results in the form of the following

theorem:

Theorem. If y1(x) and y2(x) are linearly independent solutions of

y9 1 P (x)y8 1 Q (x)y 5 O (1938)

then the general solution of
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y 9 1 P (x)y8 1 Q (x)y 5 (h2/y a) exp F 2 2 # P (x) dx G (1958)

may be written as [cf. (173)]

y 5 (Ay2
1 1 By2

2 1 2Cy1y2)
1/2 (196)

Here, A, B, and C are arbitrary constants and are related through AB 2 C 2

5 (h2/W 2) exp [ * P (x) dx], with W 5 y1y 82 2 y 81yz defined as the Wronskian

for (1938). Clearly, in (193) and (1958) the dependent and independent vari-

ables are redefined and accordingly the dots are replaced by primes in the

definition of the derivatives.
Pinney(54) studied a nonlinear equation of the type

y9 1 P (x)y8 1 Q (x)y 5 ABW2y 2 3 (197)

which again is the modified version of the auxiliary equation (15) correspond-
ing to a damped TD HO. The solution to (197) is found to be y 5 (Ay2

1 1
By2

2)
1/2. Several generalized versions of the solution (196) to (1958) have been

investigated.(54,76±78) For example, Reid(76) obtained the solution of the differ-

ential equation

y9 1 P (x)y8 1 Q (x)y 5 AB(m 2 1)( y1y2)
m 2 2W 2y 1 2 2m (198)

in the form y 5 (Aym
1 1 Bym

2 )1/2, where m is a constant assumed to be real

and nonzero. Thomas(77) has shown that the function y 5 ( y1y2)
k/2 satisfies

the nonlinear equation

y9 1 P (x)y8 1 kQ(x)y 5 (1 2 l)y 8
2
y 2 1 2 (1/4)kW2 y 1 2 4l (199)

where k is assumed to be real and nonzero and kl 5 1. As a next step of

generalization of (1958), the function

y 5 (Aym
1 1 Bym

2 1 mCyj
1y

n
2)

k/m

where m 5 j 1 n, is found to represent the solution of a nonlinear differential

equation of more general type, namely

y9 1 P (x)y8 1 kQ(x)y 5 (1 2 l)y 8
2
y 2 1 1 kUW2y 1 2 2ml (200)

where ki 5 1 as before, and

U 5 Cyj 2 2
1 y n 2 2

2 [(m 2 j 2 1) nAym
1 1 (m 2 n 2 1)jBym

2 2 Cnjyj
1y

n
2]

1 (m 2 1)AB( y1y2)
m 2 2
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It is obvious that the earlier equations can be obtained as special cases

of this last equation. For further details of such studies we refer to the

literature. (54,76±78) Interestingly, these classical dynamical studies have also
suggested some clues for the solution of several quantum problems. In particu-

lar, Burt and Reid(78) have studied the solution of a nonlinear Klein±

Gordon equation.

So far in this subsection we have discussed the solution of nonlinear

equations of the type (200) in terms of the solutions of (1938). But it may

be recalled here that we have already investigated in detail in Section 6
another dimension of applications of the knowledge of invariants in relation

to coupled nonlinear differential equations in terms of Ermakov systems.

8.2.6. Other Applications

In this subsection we briefly highlight the role which dynamical invari-

ants can possibly play (and, in fact, have already been playing in some

localized domains) in the fields of biophysics, plasma physics, and field

theories. The present survey of TD systems can help further a better under-

standing of the respective phenomenon in these areas.

8.2.6.1. Biophysics. In neurophysiology different models have been pro-
posed for nerve impulse propagation in terms of nonlinear PDEs. The common

difficulty with these models is that they turn out to be nonintegrable,(79,80) In

the following we briefly discuss a generalized but completely integrable

model for nerve impulse propagation proposed and pursued by Rajagopal(81,82)

in a series of papers.

The basic equation governing nerve impulse propagation is of the form
of a nonlinear diffusion equation which, after introducing a phenomenological

expression for the ion current, can be written as

Vxx 2 Vt 5 F (V ) (201)

where V (x, t) is the voltage across the membrane and Vt is the measure of

the displacement current per unit length passing through the membrane. Here

and in the following the subscripts indicate the variables w.r.t. which the
partial derivatives are taken. Somehow (201) fails to reproduce the important

feature of pulse recovery which is necessary for a repeated firing of the fiber.

An account of such a recovery variable R yields (201) in the form

Vxx 2 Vt 5 F (V) 1 R t (202)

with Rt 5 e (V 1 a 2 bR). Here e is proportional to the temperature factor

and a and b are constants.
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In his generalization of the model Rajagopal uses two first-order differential

equations in place of (202). For a space-clamped axon, it is assumed that the

rate of change of membrane potential (Xt) depends linearly on Z (the current
stimulus applied through the electrode to the axon) and on Y (the intrinsic

current) and nonlinearly on the membrane potential X, thereby implying

Xt 5 2 a8 [F (X ) 2 Y 2 Z ] (203)

Further, the rate of change of intrinsic current (Yt) is chosen as Yt 5 b8[G (X )

2 Y ]. Here a8 and b8 are arbitrary constants. Although the experiments(79,80)

suggest a cubic nonlinearity for F (X ) and an exponential one for G (X ),
Rajagopal(82) assumes the same form for F (X ), Z (t), and G (X ) as

F (X ) 5 k1X 2 k2X
3; Z (t) 5 k3X 2 k4X

3; G (X ) 5 a X 2 b X 3 (204)

where ki (i 5 1, 2, 3, 4) are arbitrary constants and a 5 k1 2 k3, b 5 k2 2 k4.

After a straightforward derivation, the ODE to be handled for the case of

traveling waves turns out to be

d 2X /d j 2 5 g X 2 d X 3 (205)

where g 5 a a8 1 b8 and d 5 b a8, and j 5 x 2 ut is the moving space
variable with u as the wave velocity. Although the solution of (205) has been

obtained explicitly in terms of elliptic functions, an account of the time

dependence of g and d (depending upon the choice of the model) in (205)

will bring in the knowledge of dynamical invariants discussed in Section 2.2.

8.2.6.2. Plasma Physics. Whenever the time-varying (electromagnetic
or simply magnetic) field is involved in understanding (theoretically as well

as experimentally) a physical phenomenon, the corresponding dynamical

system turns out to be a TD one. Further, the invariants may exist and can

be constructed for such a system in an exact or an approximate manner

depending upon the nature of the time dependence. Such systems have been
known (12) for a long time in the fields of plasma physics and so-called

magnetic surfaces. We make the such discussion brief here. Only recently,

the representation of a magnetic field with toroidal topology in terms of

field-line invariants has been studied by Lewis(83) and Lewis and Abraham-

Shrauner. (84) They use Boozer ’ s representation(85) for a magnetic field with

toroidal topology in the form

B(r) 5 ( = c 0) 3 ( ¹ u 0) 1 ( = f 0) 3 ( = x 0) (206)

where u 0(r), f 0(r), x 0(r), and c 0(r), respectively, are the poloidal angle,

toroidal angle, poloidal flux, and toroidal flux functions which characterize

the nature of the magnetic field. Note that any B(r) given by (206) is diver-
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gence-free, i.e., = ? B 5 0. The main advantage of using (206) is that it

allows direct representations in Hamiltonian form of the differential equation

for the magnetic field lines. Thus, the representation (206) turns out to be
useful for applications to tokamaks and stellarators. For the details we refer

to refs. 83 and 84.

8.2.6.3. Field Theories. The classical analogue of quantum field theories

in a suitable choice of the gauge also gives rise(86) to dynamical systems.

Savvidy(86) studied the Yang±Mills system described by the Lagrangian in
the covariant form as

+ 5 2 (1/4) F a
m y F a

m y

in the SU(2) case by resorting to the gauge A a
0 5 0, A a

i 5 A a
i (t). Here the

symbols have their usual meanings. This has led to a classical dynamical

system described by the coupled nonlinear differential equations of the form

fÈ a 1 (1/2) o
b

( f b)2f a 5 0

Further simplifications are achieved(87) by imposing an additional condition

A 0
3 5 0.

Recently, the Abelian Higgs model described by the Lagrangian

+ 5 2 1±4F m y F m y 1 1±2 (D m f )* (D m f ) 1 C2 | f | 2 2 C4 | f | 4

has been studied by Kumar and Khare(88) in (2 1 1) dimensions. They make
an ansatz for the gauge and Higgs fields as

A0(x, t) 5 0, A1(x, t) 5 A2(x, t) 5 h (t)/ ! 2

f (x, t) 5 exp(i v (x 1 y)) q2(t)

Further, by defining h (t) 5 q1(t) 1 ! 2 v /e, these authors obtain the system

of nonlinear equations

qÈ 1(t) 5 2 e 2q1q
2
2; qÈ 2(t) 5 2C2q2 2 4C4q

3
2 2 e 2q 2

1 q2 (207)

Clearly, such a system of equations can offer the example of an Ermakov-

type system under certain conditions.
Besides the above areas where the scope of invariants has been high-

lighted, the role of dynamical invariants in the fields of condensed matter

physics, statistical mechanics, and astrophysics has been well known in the

literature. We again refrain from these discussions here.
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9. CONCLUDING DISCUSSION AND FUTURE PROSPECTS

For the purposes of constructing exact invariants for systems involving

an explicit time dependence, a brief survey of various methods used in the

literature has been carried out. The number of methods used for 1D systems

is still more than those used for 2D systems. Though it is easier to test the

merit of a new method on a 1D system, not all the methods used for this
purpose have been applied to two or higher dimensional systems. In fact,

the underlying intricacies of a method reflect much more when it is applied

to higher dimensional systems. Sometimes the method also shows limitations

when it is extended to higher dimensions.

As such, TD systems in 3D have not been studied to the same extent

as TID ones. Even for the TID case only a few attempts(59,89) have been
made, and in some cases(59) the assumption of a certain type of symmetry in

the system reduces the problem to the 2D case. As a matter of fact there

appears a lot of simplification in the construction of invariants for TID

systems since the ansatz for I [cf. (56)] in this case is allowed(2,3) to contain

only either even powers or odd powers in momenta as a result of the time-

reversal symmetry. However, this is not possible with TD systems and this
makes their study more difficult. It may appear trivial to extend almost all

the methods used for 1D and 2D systems (cf. Sections 3 and 4) to the 3D

case, but, as mentioned before, the complexity in the construction of invariants

increases not only with the order of invariants, but also with the dimensions.

To visualize the degree of complexity in the 3D case, for example, we mention

the following: in the rationalization method, while the summations on the ii
in the ansatz (56) run from 1 to 3 and (58)±(61) remain intact in the 3D

case, the number of these latter equations to be handled finally in component

form turns out to be 20 for the second-order invariants, whereas in the 2D

case this number is just 10. Similarly, for the third-order invariants in the

3D case, the number of equations to be handled turns out to be 36 compared
to 15 for the 2D case (cf. Section 5.2). Indeed such complexity is a common

feature and appears(93) in one form or another in all the methods when they

are extended to 3D systems. Here we briefly highlight the 3D problem of

coupled oscillators in its general form, as an extension of the 2D results (cf.

Section 4.2), within the framework of the dynamical algebraic approach, and

point out some underlying intricacies in this particular case.
We consider the Hamiltonian(93)

H 5 | (1/2)( p2
1 1 p 2

2 1 p 2
3) 1 a 1(t)x

2
1 1 a 2(t)x

2
2

1 a 3(t)x
2
3 1 b (t) f (x1, x2, x3) (208)

In order to express (208) in the form (86), we identify the G n and hn ,
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G 1 5 ( p2
1 /2); G 2 5 ( p2

2 /2); G 3 5 ( p2
3 /2)

G 4 5 x 2
1; G 5 5 x 2

2; G 6 5 x 2
3; G 7 5 f (x1, x2, x3)

h1 5 h2 5 h3 5 1; h4 5 a 1(t)

h5 5 a 2(t), h6 5 a 3(t), h7 5 b (t)

and compute the nonvanishing Poisson brackets [ G m , G n]PB. While the number

of nonvanishing Poisson brackets now turns out to be large compared to the

2D case, one needs to introduce three more G n to close the Lie algebra,

namely G 8 5 2 2p1x1, G 9 5 2 2p2x2, and G 10 5 2 2p3x3 with the corresponding

hn as h8 5 h9 5 h10 5 0. Finally, for a system admitting a second-order
invariant, the equation satisfied by f in the present 3D case becomes

d (t) f 1 x1( - f / - x1) 1 x2( - f / - x2) 1 x2( - f / - x3) 5 0 (209)

with d (t) as defined before by (101). Now, it is not difficult to obtain two

special solutions of (209) in the form [cf. (100)]

f (x1, x2, x3) 5 k1x
2 d
1 1 k2x

2 d
2 1 k3x

2 d
3 (210a)

f (x1, x2, x3) 5 k4(x2/x1)
c

0 x 2 d
1 (x3/x1)

c8
0 1 k5(x3/x2)

c
0 x 2 d

2 (x1/x2)
c8
0

1 k6 (x1/x3)
c

0 x 2 d
3 (x2/x3)

c8
0 (210b)

where c0 and c 80 are the separation and ki (i 5 1, . . . , 6) are the integration

constants. The first invariant for these two forms of f in (208) can be written

down easily in accordance with the results of Section 4.2. The important
point to be noted here is about the nature of the rationale regarding the

powers of the coupling term in (208). This is also retained here in the same

form as in the 2D case. In other words, if we express a particular term in f
in (210b) as f 5 kxm

1 x n
2x

l
3, then the first invariant is found to exist only for

the case when m 1 n 1 l 5 2 d , where d is a constant and equals 2, as

before in the 2D case. Further, for the existence of this invariant there occurs
one more constraining relation, namely ( c È /4) 1 2 a 3 c Ç 1 a Ç 3 c 5 0, in addition

to (97a) and (97b). As a matter of fact, the system (210b) will lead to

Ermakov-type systems in higher (3 1 1) dimensions.

In spite of so many methods for 1D systems, not many new systems

have been found for which the invariants can be constructed. In this respect
very often the TDHO system with its possible generalizations has played a

pivotal role. In fact while the TDHO has offered a testing ground for various

methods, the TD anharmonic oscillator problem even in 1D could not be

investigated in most of the methods except for the one used by Leach and

his coworkers. (24,25,27) Some of the approaches (like the dynamical algebraic



1852 Kaushal

one or the transformation-group method, for that matter), have an obvious

capability from the point of view of extending them to the corresponding

quantum domain, but this would be without actually demonstrating their

complete potential at the classical level. Although the inherent mathematical

elegance in the dynamical algebraic approach has beautifully suggested the

criterion for the relative time dependence of various coupling terms in the

2D case (cf. Section 4.2), it somehow does not help in providing the second

invariant for these systems if it exists. There remains, however, the difficulty

of closure of the algebra as one proceeds not only for obtaining the higher

order invariants in this approach, but also for accounting for the higher order

anharmonic terms with positive powers in the V (x1, x2, t). For this purpose,

it may be of interest to use the available(90) generalized versions of this method.

Whether it is the 1D or the 2D case, we have not looked into very

general solutions of the derived potential equations [cf. (29), (65), (78)±(80),

and (106)] in rigorous mathematical terms except for trying some of their

particular solutions, which are often assumed to be separable in coordinates

and time variables. Although it is difficult to obtain such general solutions,

if one obtains them, then they may provide several new systems which have

not been covered in this paper. The potential equation (81), derived using

complex coordinates for the 2D case, has a special status in the sense that

it offers the invariants for TD central potentials of nonharmonic nature.

In view of the fact that one of the coefficient functions and subsequently

the potential function V (x, t) in the rationalization method in the 1D case

factorizes(29) in x and t variables in a rather natural manner [cf. (107) for the

coefficient function b1(x, t), with a similar situation for b0(x, t) in the second-

order case], the role of the self-similar transformation (49) in giving rise to

the form (52) remains questionable. Anyway, the use of the self-similar

technique, while it suggests an easier method to derive the higher order

invariants for the 1D case, it does not provide very different integrable systems

as far as their functional forms are concerned.

Mention may be made of other functional forms of the invariants used

for TD systems. In this review, while our survey mainly concerns the polyno-

mial (in momenta) forms, nonpolynomi al forms for the TD systems have not

been as frequently studied as TID systems. There has also been discussion

of the complex(91) invariants for the TDHO system. However, such ideas are

more relevant in the context of quantum mechanics. In fact, in this case one

exploits the generalized canonical transformations of Lewis and Leach(92) to

convert the TD system into a corresponding TID one and then looks for the

invariants in the Heisenberg picture.

Goedert and Lewis(7) have recently studied the rational form of the

invariant for 1D TD systems, using the momentum-resonance formulation
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of Lewis and Leach.(7) For the system (26), in this case one makes an ansatz

for the invariant as

I (x, p, t) 5 c (x, t) 1 o
N

n 5 1

vn (x, t)

p 2 un(x, t)

Here, I is a rational function of momentum with simple poles, which are

called momentum-resonances. As before, the use of (5) and (6) leads to
necessary and sufficient conditions on the functions c, vn , and un and subse-

quently one expresses the resonance type invariant I as a functional of the

potential V (x, t). The cases of one, two, and three resonances corresponding ,

respectively, to the values 1, 2, and 3 of N are investigated. Although we

have tried to obtain the conditions in general under which the second invariant
for 2D TD systems can be constructed in a polynomial form (cf. Section 7),

the available methods are inadequate for this purpose. Perhaps the second

invariant for such systems could be of nonpolynomi al form, which, of course,

has not been studied so far.

Finally, the important observation made already in connection with

studies of coupled oscillators, in both TD (cf. Sections 4.1 and 4.2) and TID
cases,(41) concerns the powers of the coupling terms in the Lagrangian, i.e.,

the terms of the type x m
1 x n

2 [cf. (70) and (146)]. Interestingly, it is found

that this system admits an invariant only for the case when m 1 n 5 2 2.

Some of the integrable systems corresponding to this situation are listed in

Table 1 of ref. 41), and the time dependence of the others is discussed here

in Sections 4.1, 4.2, and 6.1 mainly in the context of generalized Ermakov
systems. Although such a restriction on m and n appears in a natural manner

in the rationalization method and is also found to have a basis in the closure

of the dynamical algebra of phase space functions, the question remains as

to why there is only this peculiar restriction. On the other hand, the ad hoc

choices of m1 and m2 made by Ray and Reid(28) in their work [cf. (138)] also

conform to such a restriction on m and n. From all this it appears that this
restriction indeed has a much deeper origin than merely providing the integ-

rable systems. It could well be that the special setting of the kinetic and

harmonic terms in the potential in the Hamiltonian structure is responsible

for such a restriction.

ACKNOWLEDGMENTS

It is a pleasure to thank Drs. D. Parashar and S. C. Mishra for a series

of useful discussions from time to time and for a critical reading of parts of

the manuscript. I am also grateful to Profs. H. Ralph Lewis and H. J. Korsch

for making me available their recent work on the subject and for encouraging



1854 Kaushal

me in this endeavor. Thanks are also due to Prof. A. N. Mitra and Prof. R. P.

Saxena for their interest in this work. The author is a UGC Research Scientist.

REFERENCES

1. E. T. Whittaker, Analytical Dynamics (University of Cambridge Press, Cambridge, 1927).

2. J. Hietarinta, Phys. Rep. 147 (1987) 87±154.

3. C. R. Holt, J. Math. Phys. 23 (1982) 1037.

4. L. S. Hall, Physica 8D (1983) 90.

5. M. Lakshmanan and R. Sahadevan, Phys. Rep. 224 (1993) 1.

6. P. A. M. Dirac, Proc. R. Soc. A 246 (1958) 326.

7. H. R. Lewis and P. G. L. Leach, Ann. Phys. 164 (1985) 47; J. Goedert and H. R. Lewis,

J. Math. Phys. 28 (1987) 728, 736.

8. N. N. Bogoliubov and Y. A. Mitropolski, Asymptotic Methods in the Theory of Nonlinear

Oscillations (Gordon and Breach, New York, 1961); M. D. Kruskal, J. Math. Phys. 3

(1962) 806.

9. V. I. Arnold, Mathematical Methods of Classical Mechanics (Springer, New York, 1978).

10. R. Abraham and J. E. Marsden, Foundations of Mechanics , 2nd ed. (Benjamin/Cummings,

Reading, Massachusetts, 1982).

11. S. Chandrasekhar, Principles of Stellar Dynamics (Dover, New York, 1942), Chapter 3.

12. K. J. Whiteman, Rep. Prog. Phys. 40 (1977) 1033.

13. L. D. Landau and E. M. Lifshitz, Mechanics , 3rd ed. (Pergamon, Oxford, 1976); H.

Goldstein, Classical Mechanics , 2nd ed. (Addison-Wesley, Reading, Massachusetts, 1980).

14. K. Nakamura, Quantum Chaos: A New Paradigm of Nonlinear Dynamics (Cambridge

University Press, Cambridge, 1993).

15. P. Helander, M. Lisak, and V. E. Semenov, Phys. Rev. Lett. 68 (1992) 3659, and refer-

ences therein.

16. M. Kolsrud, Phys. Rev. 104 (1956) 1186.

17. M. Kruskal, J. Math. Phys. 3 (1962) 806.

18. H. R. Lewis, Jr., J. Math Phys. 9 (1968) 1976; see also H. R. Lewis, Jr., Phys. Rev. Lett.

13 (1967) 510, 636.

19. H. R. Lewis and W. B. Riesenfeld, J. Math. Phys. 10 (1969) 1458; S. S. Mizrahi, Phys.

Lett. A 138 (1989) 465; S. Salmistraro and R. Rosso, J. Math. Phys. 34 (1993) 3964.

20. M. S. Abdalla and R. K. Colegrave, Phys. Rev. 32A (1985) 1958; R. K. Colgrave and

M. A. Mannan, J. Math. Phys. 29 (1988) 1580.

21. R. S. Kaushal and H. J. Korsch, J. Math. Phys. 22 (1981) 1904.

22. P. G. L. Leach, SIAM J. Appl. Math. 34 (1978) 496.

23. J. R. Ray and J. L. Reid, Phys. Rev. A 26 (1982) 1042.

24. P. G. L. Leach, J. Math. Phys. 22 (1981) 465; 20 (1979) 96; A. Maharatna, R. Dutt, and

D. Chatterji, J. Math. Phys. 20, (1979) 2221.

25. P. G. L. Leach and S. D. Maharaj, J. Math. Phys. 33 (1992) 2023.

26. S. Chandrasekhar, An Introduction to the Study of Stellar Structure (Dover, New York,

1939), Chapters 3, 4.

27. P. G. L. Leach, J. Math. Phys. 26 (1985) 2510; W. Sarlet and L. Y. Bahar, Int. J. Nonlin.

Mech. 15 (1980) 133.

28. J. R. Ray and J. L. Reid, J. Math Phys. 20 (1979) 2054.

29. R. S. Kaushal, Pramana Ð J. Phys. 24 (1985) 663.

30. V. P. Ermakov, Univ. Izv. Kiev. Ser. III 9 (1880) 1.

31. J. R. Ray and J. L. Reid, Phys. Lett. A 71 (1979) 317; 74 (1979) 23.



Exact Invariants for Time Dependent Classical Dynamical Systems 1855

32. J. L. Reid and J. R. Ray, J. Math. Phys. 23 (1982) 503; J. Phys. A 15 (1982) 2751.

33. H. J. Korsch, Phys. Lett. A 74 (1979) 294.

34. K. Takayama, Phys. Lett. A 88 (1982) 57.

35. M. Lutzky, Phys. Lett. A 68 (1978) 3; J. Phys. A 11 (1978) 249.

36. J. R. Ray, Phys. Rev. A 26 (1982) 729.

37. J. R. Burgan et al., Phys. Lett. A 74 (1979) 11.

38. M. R. Feix, S. Bouquet, and H. R. Lewis, Physica 28D (1987) 80.

39. H. R. Lewis and P. G. L. Leach, J. Math. Phys. 23 (1982) 2371.

40. B. Grammaticos and B. Dorizzi, J. Math. Phys. 25 (1984) 2194.

41. R. S. Kaushal, D. Parashar, and S. C. Mishra. Fortschr. Phys. 42 (1994) 689.

42. R. S. Kaushal, S. C. Mishra, and K. C. Tripathy, Phys. Lett. A 102 (1984) 7.

43. S. C. Mishra, R. S. Kaushal, and K. C. Tripathy, J. Math. Phys. 25 (1984) 2217.

44. S. C. Mishra. Some studies on two-dimensional classical integrable systems, Ph.D. thesis,

Delhi University (1985); R. S. Kaushal, S. C. Mishra, and K. C. Tripathy, J. Math. Phys.

26 (1985) 420.

45. R. S. Kaushal and S. C. Mishra. PramanaÐ J. Phys. 26 (1986) 109.

46. G. H. Katzin and J. Levine, J. Math. Phys. 24 (1983) 1761.

47. G. H. Katzin and J. Levine, J. Math. Phys. 18 (1977) 1267; 23 (1982) 552.

48. R. S. Kaushal and S. C. Mishra, J. Math. Phys. 34 (1993) 5843; R. S. Kaushal, D. Parashar,

Shalini Gupta, and S. C. Misra, Ann. Phys. (NY) 259 (1997) 233.

49. A. Ramani, B. Dorzzi, and B. Grammaticos, Phys. Rev. Lett. 49 (1982) 1539.

50. R. S. Kaushal, Third order invariants for time dependent two-dimensiona l classical dynami-

cal systems, (unpublished).

51. P. G. L. Leach, Phys. Lett. A 158 (1991) 102.

52. C. Athorne, Phys. Lett. A 159 (1991) 375.

53. K. S. Givinder and P. G. L. Leach, Phys. Lett. A 186 (1994) 391; J. Phys. A 27 (1994) 4153.

54. E. Pinney, Proc. Am. Math. Soc. 1 (1950) 681.

55. C. Athorne, J. Phys. A 24 (1991) 945.

56. K. S. Govinder, C. Athorne, and P. G. L. Leach, J. Phys. A 26 (1993) 4035.

57. J. M. Cervero and J. D. Lejarreta, Phys. Lett. A 156 (1991) 201.

58. R. S. Kaushal, PramanaÐ J. Phys. 42 (1994) 467.

59. A. A. Makarov, J. A. Simorodinsky, Kh. Valiev, and P. Winternitz, Nuovo Cimento A 52

(1967) 1061.

60. R. S. Kaushal, S. C. Mishra, and K. C. Tripathy, J. Math. Phys. 26 (1985) 420.

61. C. J. Eliezer and A. Gray, SIAM J. Appl. Math. 30 (1976) 463.

62. H. J. Korsch and H. Laurent, J. Phys. B 14 (1981) 4213.

63. H. J. Korsch, H. Laurent, and R. Mohlenkamp, J. Phys. B 15 (1982) 1.

64. R. A. Lee, J. Phys. A 17 (1984) 535.

65. W. E. Milne, Phys. Rev. 35 (1930) 863.

66. R. S. Kaushal and D. Parashar, Quantum mechanics and supersymmetric quantum mechan-

ics as the multidimensional Ermakov theories, In Proceedings XI DAE HEP Symposium,Ð

Santiniketan (India) Dec. 28, 1994± Jan. 2, 1995; J. Phys. A29 (1996) 889.

67. D. C. Khandekar and S. V. Lawande, Phys. Lett. 67A (1978) 175; J. Math Phys. 16 (1975)

384; 20 (1979) 1870; S. V. Lawande and A. K. Dhara, Phys. Lett. 99A (1983) 353.

68. D. C. Khandekar and S. V. Lawande, Phys. Rep. 137 (1986) 115, and references therein.

69. A. K. Dhara and S. V. Lawande, J. Phys. A 17 (1984) 2423.

70. D. C. Khandekar and S. V. Lawande, J. Phys. A 5 (1972) 812.

71. B. K. Berger, Phys. Rev. D 18 (1978) 4367.

72. C. W. Misner, Phys. Rev. D 8 (1973) 3271.

73. J. R. Ray, Phys. Rev. D 20 (1979) 2632.



1856 Kaushal

74. J. Martin and S. Bouquet, J. Math Phys. 35 (1994) 181.

75. H. J. Giacomini, J. Phys. A 23 (1990) 587, 865.

76. J. L. Reid, Proc. Am. Math. Soc. 38 (1973) 532.

77. J. M. Thomas, Proc. Am. Math. Soc. 7 (1956) 95.

78. P. B. Burt and J. L. Reid, J. Math. Anal. Appl. 55 (1976) 43.

79. A. L. Hodgkin and A. F. Huxley, J. Physiol. 116 (1952) 449; 117 (1952) 500; R. Fitz

Hugh, Biophys. J. 1 (1961) 445; for earlier work see, for example, A. C. Scott, Rev. Mod.

Phys. 47 (1975) 505.

80. J. L. Hindmarsh and R. M. Rose, Nature 296 (1982) 162.

81. M. Lakshmanan and K. Rajagopal, Phys. Lett. A 82 (1981) 266.

82. K. Rajagopal, Phys. Lett. A 98 (1983) 77; 99 (1983) 261; 100 (1984) 49; 105 (1984) 160;

108 (1985) 228.

83. H. R. Lewis, Representation of magnetic fields with toroidal topology in terms of field-

line invariants. Report LA-UR-88-2607-Revised, Los Alamos National Laboratory; in

Proceedings International Conference, on Plasma Physics, Delhi (India), 1989, paper H-19.

84. H. R. Lewis and B. Abraham-Shrauner, Bull. Am. Phys. Soc. 34 (1989) 1974.

85. A. H. Boozer, Phys. Fluids 26 (1983) 1288.

86. G. K. Savvidy, Phys. Lett. B 130 (1983) 303; G. K. Savvidy, Nucl. Phys. B 246 (1984)

302; S. J. Chang, Phys. Rev. D 29 (1984) 259.

87. J. Villarroel, J. Math. Phys. 29 (1988) 2132.

88. C. Nagraj Kumar and A. Khare, Preprint, Institute of Physics, Bhubneswar (1987).

89. S. Ichtiaroglou, J. Phys. A 20 (1987) 5079; M. Lakashmanan and R. Sahadevan, J. Math.

Phys. 32 (1991) 75.

90. A. M. Perelomov, Integrable Systems of Classical Mechanics and Lie Algebraes, Vol. 1

(Birkhauser, Basel, 1990).

91. R. K. Colegrave, P. Croxson, and M. A. Mannan, Phys. Lett. A 131 (1988) 407.

92. H. R. Lewis and P. G. L. Leach, J. Math. Phys. 23 (1982) 165.

93. R. S. Kaushal, Classical and Quantum Mechanics of Noncentral Potentials: A Survey of

Two Dimensional Systems, Narosa (New Delhi)/Springer (Heidelberg), (1998) Chapters 3

and 7.


